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Recognizing object instances

Kristen Grauman

UT-Austin

Plan for today

• 1. Basics in feature extraction: filtering

• 2. Invariant local features

• 3. Recognizing object instances

Basics in feature extraction

…

Image Formation

Slide credit: Derek Hoiem

Slide credit: Derek Hoiem

Digital images Digital images
• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz

2D

1D
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Digital color images

R G B

Color images, 

RGB color 

space

Digital color images

Kristen Grauman

Main idea: image filtering

• Compute a function of the local neighborhood at 

each pixel in the image

– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:

– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Adapted from Derek Hoiem

Motivation: noise reduction

• Even multiple images of the same static scene will 

not be identical.

Kristen Grauman

Motivation: noise reduction

• Even multiple images of the same static scene will 

not be identical.

• How could we reduce the noise, i.e., give an estimate 

of the true intensities?

• What if there’s only one image?

Kristen Grauman

First attempt at a solution

• Let’s replace each pixel with an average of all 

the values in its neighborhood

• Assumptions: 
• Expect pixels to be like their neighbors

• Expect noise processes to be independent from pixel to pixel
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First attempt at a solution

• Let’s replace each pixel with an average of all 

the values in its neighborhood

• Moving average in 1D:

Source: S. Marschner

Weighted Moving Average

Can add weights to our moving average

Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Moving Average In 2D
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Source: S. Seitz

Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D
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Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood 

around  image pixel F[i,j]

Attribute uniform 

weight to each pixel

Now generalize to allow different weights depending on  

neighboring pixel’s relative position:

Non-uniform weights

Correlation filtering

Filtering an image: replace each pixel with a linear 

combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 

weights in the linear combination.

This is called cross-correlation, denoted 

Averaging filter

• What values belong in the kernel H for the moving 

average example?
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“box filter”

?
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Smoothing by averaging

depicts box filter: 

white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?

Gaussian filter
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1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have 

the most influence on the output?

• Removes high-frequency components from the 

image (“low-pass filter”).

This kernel is an 
approximation of a 2d 
Gaussian function:

Source: S. Seitz

Smoothing with a Gaussian Gaussian filters
• What parameters matter here?

• Variance of Gaussian: determines extent of 

smoothing

σ = 2 with 

30 x 30 

kernel

σ = 5 with 

30 x 30 

kernel

Kristen Grauman

Smoothing with a Gaussian

for sigma=1:3:10 

h = fspecial('gaussian‘, fsize, sigma);

out = imfilter(im, h); 

imshow(out);

pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 

kernel, and controls the amount of smoothing.

Kristen Grauman

Properties of smoothing filters

• Smoothing
– Values positive 

– Sum to 1  _______________________

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

Kristen Grauman
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Predict the outputs using 

correlation filtering

000
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000

* = ?

000

100

000

* = ?

111
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000
020
000

-* = ?

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered 

(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

by 1 pixel 

with 

correlation

Source: D. Lowe

Practice with linear filters

Original

?
111

111

111

Source: D. Lowe
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Practice with linear filters

Original

111

111

111

Blur (with a

box filter)

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000

- ?

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000

-

Sharpening filter:

accentuates differences 

with local average

Source: D. Lowe

Filtering examples: sharpening

Main idea: image filtering

• Compute a function of the local neighborhood at 

each pixel in the image

– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:

– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Why are gradients important?

Kristen Grauman
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Derivatives and edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Source: L. Lazebnik

An edge is a place of rapid change in the 

image intensity function.

Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite 

differences:

To implement above as convolution, what would be the 

associated filter?
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Kristen Grauman

Partial derivatives of an image

Which shows changes with respect to x?
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(showing filters for correlation)Kristen Grauman

Image gradient

The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Slide credit Steve Seitz

Effects of noise

Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

Slide credit Steve Seitz
Where is the edge?  

Solution:  smooth first

Look for peaks in 
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Derivative theorem of convolution

Differentiation property of convolution.

Slide credit Steve Seitz

 11  
0.0030    0.0133    0.0219    0.0133    0.0030

0.0133    0.0596    0.0983    0.0596    0.0133

0.0219    0.0983    0.1621    0.0983    0.0219

0.0133    0.0596    0.0983    0.0596    0.0133

0.0030    0.0133    0.0219    0.0133    0.0030

)()( hgIhgI 

Derivative of Gaussian filters

Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik

Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 

Gaussian kernel, and controls the amount of smoothing.

…

Kristen Grauman

Effect of σ on derivatives

The apparent structures differ depending on 

Gaussian’s scale parameter.

Larger values: larger scale edges detected

Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Kristen Grauman

Mask properties
• Smoothing

– Values positive 

– Sum to 1  constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

• Derivatives
– ___________ signs used to get high response in regions of high 

contrast

– Sum to ___  no response in constant regions

– High absolute value at points of high contrast

Kristen Grauman
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Main idea: image filtering

• Compute a function of the local neighborhood at 

each pixel in the image

– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:

– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Template matching

• Filters as templates: 

Note that filters look like the effects they are intended 

to find --- “matched filters”

• Use normalized cross-correlation score to find a 

given pattern (template) in the image.

• Normalization needed to control for relative 

brightnesses.

Template matching

Scene

Template (mask)

A toy example

Template matching

Template

Detected template

Template matching

Detected template Correlation map

Where’s Waldo?

Scene

Template
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Where’s Waldo?

Detected template

Template

Where’s Waldo?

Detected template Correlation map

Template matching

Scene

Template

What if the template is not identical to some 

subimage in the scene?

Template matching

Detected template

Template

Match can be meaningful, if scale, orientation, 

and general appearance is right.

…but we can do better!...

Summary so far

• Compute a function of the local neighborhood at 

each pixel in the image

– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:

– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Plan for today

• 1. Basics in feature extraction: filtering

• 2. Invariant local features

• 3. Specific object recognition methods
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Local features:

detection and description 

Local invariant features

– Detection of interest points

• Harris corner detection

• Scale invariant blob detection: LoG

– Description of local patches

• SIFT : Histograms of oriented gradients

Basic goal Local features: main components

1) Detection: Identify the 

interest points

2) Description:Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views

],,[ )1()1(

11 dxx x

],,[ )2()2(

12 dxx x

Kristen Grauman

Goal: interest operator repeatability

• We want to detect (at least some of) the 

same points in both images.

• Yet we have to be able to run the detection 

procedure independently per image.

No chance to find true matches!

Goal: descriptor distinctiveness

• We want to be able to reliably determine 

which point goes with which.

• Must provide some invariance to geometric 

and photometric differences between the two 

views.

?
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Local features: main components

1) Detection: Identify the 

interest points

2) Description:Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views

Kristen Grauman

• What points would you choose?

Detecting corners

Compute “cornerness” response at every pixel.

Detecting corners

Detecting corners Detecting local invariant 

features

• Detection of interest points

– Harris corner detection

– Scale invariant blob detection: LoG

• (Next time: description of local patches)
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Corners as distinctive interest points

We should easily recognize the point by 
looking through a small window

Shifting a window in any direction should give 
a large change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 

neighborhood of a point).

Notation:

First, consider an axis-aligned corner:

What does this matrix reveal?
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First, consider an axis-aligned corner:

This means dominant gradient directions align with 

x or y axis

Look for locations where both λ’s are large.

If either λ is close to 0, then this is not corner-like.

What does this matrix reveal?

What if we have a corner that is not aligned with the 

image axes? 

What does this matrix reveal?

Since M is symmetric, we have TXXM 









2

1

0

0





iii xMx 

The eigenvalues of M reveal the amount of 

intensity change in the two principal orthogonal 

gradient directions in the window.

Corner response function

“flat” region

1 and 2 are 

small;

“edge”:

1 >> 2

2 >> 1

“corner”:

1 and 2 are large,

1 ~ 2;

2

2
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Harris corner detector

1) Compute M matrix for each image window to 

get their cornerness scores.

2) Find points whose surrounding window gave 

large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform 

non-maximum suppression

Also used:

Harris Detector: Steps

Harris Detector: Steps

Compute corner response f

Harris Detector: Steps

Find points with large corner response: f > threshold

Harris Detector: Steps

Take only the points of local maxima of f

Harris Detector: Steps
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Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

TXXM 









2

1

0

0



Yes

Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

All points will be 

classified as edges
Corner !

Yes

No

Scale invariant interest points

How can we independently select interest points in 

each image, such that the detections are repeatable 

across different scales?

Automatic scale selection

Intuition: 

• Find scale that gives local maxima of some function 

f in both position and scale.

f

region size

Image 1
f

region size

Image 2

s1 s2

What can be the “signature” function?

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D

2

2

2

2
2

y

g

x

g
g









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Blob detection in 2D: scale selection

Laplacian-of-Gaussian = “blob” detector
2

2

2

2
2

y

g

x

g
g











fi
lt
e

r 
s
c
a
le

s

img1 img2 img3

Blob detection in 2D

We define the characteristic scale as the scale 

that produces peak of Laplacian response

characteristic scale

Slide credit: Lana Lazebnik

Example

Original image 

at ¾ the size

Original image 

at ¾ the size
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)()(  yyxx LL 

1

2

3

4

5

 List of

(x, y, σ)

scale

Scale invariant interest points

Interest points are local maxima in both position 

and scale.

Squared filter 

response maps

Scale-space blob detector: Example

T. Lindeberg.  Feature detection with automatic scale selection.  IJCV 1998.

Scale-space blob detector: Example

Image credit: Lana Lazebnik
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We can approximate the Laplacian with a 

difference of Gaussians; more efficient to 

implement.

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

Technical detail Summary

• Interest point detection

– Harris corner detector

– Laplacian of Gaussian, automatic scale selection

Local features: main components

1) Detection: Identify the 

interest points

2) Description:Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views

],,[ )1()1(

11 dxx x

],,[ )2()2(

12 dxx x

Kristen Grauman

Geometric transformations

e.g. scale, 

translation, 

rotation

Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial

Raw patches as local descriptors

The simplest way to describe the 

neighborhood around an interest 

point is to write down the list of 

intensities to form a feature vector.

But this is very sensitive to even 

small shifts, rotations.
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Scale Invariant Feature Transform (SIFT) 

descriptor [Lowe 2004] 

• Use histograms to bin pixels within sub-patches 

according to their orientation.

0 2p
gradients binned by orientation

subdivided local patch

Final descriptor = 
concatenation of all 
histograms

histogram per grid cell

http://www.vlfeat.org/overview/sift.html

http://www.vlfeat.org/overview/sift.html

Interest points and their 
scales and orientations
(random subset of 50)

SIFT descriptors

Scale Invariant Feature Transform (SIFT) 

descriptor [Lowe 2004] 

CSE 576: Computer Vision

Making descriptor rotation invariant

Image from Matthew Brown

• Rotate patch according to its dominant gradient 

orientation

• This puts the patches into a canonical orientation.

• Extraordinarily robust matching technique

• Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination

• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time

• Lots of code available, e.g. http://www.vlfeat.org/overview/sift.html

Steve Seitz

SIFT descriptor [Lowe 2004] 

SIFT properties

• Invariant to

– Scale 

– Rotation

• Partially invariant to

– Illumination changes

– Camera viewpoint

– Occlusion, clutter

Example

NASA Mars Rover images
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NASA Mars Rover images

with SIFT feature matches

Figure by Noah Snavely

Example
SIFT properties

• Invariant to

– Scale 

– Rotation

• Partially invariant to

– Illumination changes

– Camera viewpoint

– Occlusion, clutter

Local features: main components

1) Detection: Identify the 

interest points

2) Description:Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views

Kristen Grauman

Matching local features

Matching local features

?

To generate candidate matches, find patches that have 

the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or 

closest k, or within a thresholded distance)

Image 1 Image 2

Ambiguous matches

At what SSD value do we have a good match?

To add robustness to matching, can consider ratio : 

distance to best match  / distance to second best match

If low, first match looks good.

If high, could be ambiguous match.

Image 1 Image 2

? ? ? ?
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Matching SIFT Descriptors

• Nearest neighbor (Euclidean distance)

• Threshold ratio of nearest to 2nd nearest descriptor

Lowe IJCV 2004

http://www.vlfeat.org/overview/sift.html

http://www.vlfeat.org/overview/sift.html

Interest points and their 
scales and orientations
(random subset of 50)

SIFT descriptors

Scale Invariant Feature Transform (SIFT) 

descriptor [Lowe 2004] 

SIFT (preliminary) matches

http://www.vlfeat.org/overview/sift.html

http://www.vlfeat.org/overview/sift.html

Value of local (invariant) features

• Complexity reduction via selection of distinctive points

• Describe images, objects, parts without requiring 

segmentation

– Local character means robustness to clutter, occlusion

• Robustness: similar descriptors in spite of noise, blur, etc.

Applications of local 

invariant features

• Wide baseline stereo

• Motion tracking

• Panoramas

• Mobile robot navigation

• 3D reconstruction

• Recognition

• …

Automatic mosaicing

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Photo tourism [Snavely et al.]

Recognition of specific objects, scenes

Rothganger et al. 2003 Lowe 2002

Schmid and Mohr 1997 Sivic and Zisserman, 2003

Summary so far

• Interest point detection

– Harris corner detector

– Laplacian of Gaussian, automatic scale selection

• Invariant descriptors

– Rotation according to dominant gradient direction

– Histograms for robustness to small shifts and 

translations (SIFT descriptor)

Plan for today

• 1. Basics in feature extraction: filtering

• 2. Invariant local features

• 3. Recognizing object instances

“Groundhog Day” [Rammis, 1993]Visually defined query

“Find this 

clock”

Example I: Visual search in feature films

“Find this 

place”

Recognizing or retrieving

specific objects

Slide credit: J. Sivic
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Find these landmarks ...in these images and 1M more

Slide credit: J. Sivic

Recognizing or retrieving

specific objects

Example II: Search photos on the web for particular places 

Why is it difficult?

Want to find the object despite possibly large changes in
scale, viewpoint, lighting and partial occlusion

ViewpointScale

Lighting Occlusion

Slide credit: J. Sivic

We can’t expect to match such varied instances with a single 
global template...

Instance recognition

• Visual words

• quantization, index, bags of words

• Spatial verification

• affine; RANSAC, Hough

• Other text retrieval tools

• tf-idf, query expansion 

• Example applications

Indexing local features

• Each patch / region has a descriptor, which is a 

point in some high-dimensional feature space 

(e.g., SIFT)

Descriptor’s 

feature space

Kristen Grauman

Indexing local features

• When we see close points in feature space, we 

have similar descriptors, which indicates similar 

local content.

Descriptor’s 

feature space

Database 

images

Query 

image

Easily can have millions of 

features to search!Kristen Grauman
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Indexing local features: 

inverted file index
• For text 

documents, an 

efficient way to find 

all pages on which 

a word occurs is to 

use an index…

• We want to find all 

images in which a 

feature occurs.

• To use this idea, 

we’ll need to map 

our features to 

“visual words”.
Kristen Grauman

Visual words

• Map high-dimensional descriptors to tokens/words 

by quantizing the feature space

Descriptor’s 

feature space

• Quantize via 

clustering, let 

cluster centers be 

the prototype 

“words”

• Determine which 

word to assign to 

each new image 

region by finding 

the closest cluster 

center.

Word #2

Kristen Grauman

Visual words: main idea

• Extract some local features from a number of images …

e.g., SIFT descriptor space: each 

point is 128-dimensional

Slide credit: D. Nister, CVPR 2006

Visual words: main idea

Visual words: main idea Visual words: main idea
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Each point is a 

local descriptor, 

e.g. SIFT vector. 

Visual words

• Example: each 

group of patches 

belongs to the 

same visual word

Figure from  Sivic & Zisserman, ICCV 2003Kristen Grauman

Inverted file index

• Database images are loaded into the index mapping 

words to image numbers
Kristen Grauman

• New query image is mapped to indices of database 

images that share a word.

Inverted file index

Kristen Grauman

Instance recognition:

remaining issues

• How to summarize the content of an entire 

image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 

perform quantization efficiently?

• Is having the same set of visual words enough to 

identify the object/scene?  How to verify spatial 

agreement?

Kristen Grauman
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Analogy to documents

Of all the sensory impressions proceeding to 

the brain, the visual experiences are the 

dominant ones. Our perception of the world 

around us is based essentially on the 

messages that reach the brain from our eyes. 

For a long time it was thought that the retinal 

image was transmitted point by point to visual 

centers in the brain; the cerebral cortex was a 

movie screen, so to speak, upon which the 

image in the eye was projected. Through the 

discoveries of Hubel and Wiesel we now 

know that behind the origin of the visual 

perception in the brain there is a considerably 

more complicated course of events. By 

following the visual impulses along their path 

to the various cell layers of the optical cortex, 

Hubel and Wiesel have been able to 

demonstrate that the message about the 

image falling on the retina undergoes a step-

wise analysis in a system of nerve cells 

stored in columns. In this system each cell 

has its specific function and is responsible for 

a specific detail in the pattern of the retinal 

image.

sensory, brain, 

visual, perception, 

retinal, cerebral cortex,

eye, cell, optical 

nerve, image

Hubel, Wiesel

China is forecasting a trade surplus of $90bn 

(£51bn) to $100bn this year, a threefold 

increase on 2004's $32bn. The Commerce 

Ministry said the surplus would be created by 

a predicted 30% jump in exports to $750bn, 

compared with a 18% rise in imports to 

$660bn. The figures are likely to further 

annoy the US, which has long argued that 

China's exports are unfairly helped by a 

deliberately undervalued yuan.  Beijing 

agrees the surplus is too high, but says the 

yuan is only one factor. Bank of China 

governor Zhou Xiaochuan said the country 

also needed to do more to boost domestic 

demand so more goods stayed within the 

country. China increased the value of the 

yuan against the dollar by 2.1% in July and 

permitted it to trade within a narrow band, but 

the US wants the yuan to be allowed to trade 

freely. However, Beijing has made it clear that 

it will take its time and tread carefully before 

allowing the yuan to rise further in value.

China, trade, 

surplus, commerce, 

exports, imports, US, 

yuan, bank, domestic, 

foreign, increase, 

trade, value

ICCV 2005 short course, L. Fei-Fei

Bags of visual words

• Summarize entire image 

based on its distribution 

(histogram) of word 

occurrences.

• Analogous to bag of words 

representation commonly 

used for documents.

Comparing bags of words

• Rank frames by normalized scalar product between their 

(possibly weighted) occurrence counts---nearest

neighbor search for similar images.

[5  1   1    0][1  8   1    4]          

jd


q


𝑠𝑖𝑚 𝑑𝑗 , 𝑞 =
𝑑𝑗 , 𝑞

𝑑𝑗 𝑞

=
 𝑖=1
𝑉 𝑑𝑗 𝑖 ∗ 𝑞(𝑖)

 𝑖=1
𝑉 𝑑𝑗(𝑖)

2 ∗  𝑖=1
𝑉 𝑞(𝑖)2

for vocabulary of V words

Inverted file index and

bags of words similarity

w91

1. Extract words in query

2. Inverted file index to find 

relevant frames

3. Compare word counts
Kristen Grauman

Instance recognition:

remaining issues

• How to summarize the content of an entire 

image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 

perform quantization efficiently?

• Is having the same set of visual words enough to 

identify the object/scene?  How to verify spatial 

agreement?

Kristen Grauman
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Larger vocabularies 

can be 

advantageous…

But what happens if it 

is too large?

Vocabulary size

Results for recognition task 

with 6347 images 

Nister & Stewenius, CVPR 2006Influence on performance, sparsity?

Branching 

factors
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K. Grauman, B. Leibe

Vocabulary Trees: hierarchical clustering 

for large vocabularies

• Tree construction:

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Vocabulary Tree

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]

Vocabulary trees: complexity

Number of words given tree parameters: 

branching factor and number of levels

Word assignment cost vs. flat vocabulary

Visual words/bags of words

+  flexible to geometry / deformations / viewpoint

+  compact summary of image content

+  provides vector representation for sets

+  very good results in practice

- background and foreground mixed when bag 

covers whole image

- optimal vocabulary formation remains unclear

- basic model ignores geometry – must verify 

afterwards, or encode via features

Kristen Grauman

Instance recognition:

remaining issues

• How to summarize the content of an entire 

image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 

perform quantization efficiently?

• Is having the same set of visual words enough to 

identify the object/scene?  How to verify spatial 

agreement?

Kristen Grauman
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Which matches better?

Derek Hoiem

Spatial Verification

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

Query Query

DB image with high BoW
similarity DB image with high BoW

similarity

Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

Spatial Verification

Query Query

DB image with high BoW
similarity DB image with high BoW

similarity

Spatial Verification: two basic strategies

• RANSAC

• Generalized Hough Transform

Kristen Grauman

Outliers affect least squares fit Outliers affect least squares fit
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RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, 

so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the 

current fit, then the resulting line won’t have much 

support from rest of the points.

RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 

points (i.e., points whose distance from the 

line is less than t)

• If there are d or more inliers, accept the line 

and refit using all inliers

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

198

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

199

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group of points on which to 

base transformation estimate

2. Compute model from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  

estimate of model on all of the inliers

• Keep the model with the largest number of inliers

That is an example fitting a model 

(line)…

What about fitting a transformation 

(translation)?

RANSAC example: Translation

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector
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RANSAC verification

For matching specific scenes/objects, common to 

use an affine transformation for spatial verification

Fitting an affine transformation
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Approximates viewpoint 

changes for roughly 

planar objects and 

roughly orthographic 

cameras.

RANSAC verification Spatial Verification: two basic strategies

• RANSAC

– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 

transformations 

• e.g., “success” if find an affine transformation with > N inlier 

correspondences

• Generalized Hough Transform

– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman

Spatial Verification: two basic strategies

• RANSAC

– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 

transformations 

• e.g., “success” if find an affine transformation with > N inlier 

correspondences

• Generalized Hough Transform

– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman

Voting

• It’s not feasible to check all combinations of features by 

fitting a model to each possible subset.

• Voting is a general technique where we let the features 

vote for all models that are compatible with it.

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically 

their votes should be inconsistent with the majority of 

“good” features.

Kristen Grauman
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Difficulty of line fitting

Kristen Grauman

Hough Transform for line fitting

• Given points that belong to a line, what 

is the line?

• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting 

technique that can be used to answer 

all of these questions.

Main idea: 

1.  Record vote for each possible line 

on which each edge point lies.

2.  Look for lines that get many votes.

Kristen Grauman

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz

Finding lines in an image: Hough space

What are the line parameters for the line that contains both 

(x0, y0) and (x1, y1)?

• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space

x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)

Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) 

for the most prominent line in the image space?

• Let each edge point in image space vote for a set of 

possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with 

the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space
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Voting: Generalized Hough Transform

• If we use scale, rotation, and translation invariant local 

features, then each feature match gives an alignment 

hypothesis (for scale, translation, and orientation of 

model in image).

Model Novel image

Adapted from Lana Lazebnik

Voting: Generalized Hough Transform

• A hypothesis generated by a single match may be 

unreliable,

• So let each match vote for a hypothesis in Hough space

Model Novel image

Gen Hough Transform details (Lowe’s system)

• Training phase: For each model feature, record 2D 

location, scale, and orientation of model (relative to 

normalized feature frame)

• Test phase: Let each match btwn a test SIFT feature 

and a model feature vote in a 4D Hough space

• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location

• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 

geometric verification 

• Estimate least squares affine transformation 

• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”

IJCV 60 (2), pp. 91-110, 2004. 
Slide credit: Lana Lazebnik

Objects recognized, Recognition in 

spite of occlusion

Example result

Background subtract 

for model boundaries

[Lowe]

Difficulties of voting

• Noise/clutter can lead to as many votes as 

true target

• Bin size for the accumulator array must be 

chosen carefully

• In practice, good idea to make broad bins and 

spread votes to nearby bins, since verification 

stage can prune bad vote peaks.

Gen Hough vs RANSAC

GHT

• Single correspondence -> 

vote for all consistent 

parameters

• Represents uncertainty in the 

model parameter space

• Linear complexity in number 

of correspondences and 

number of voting cells; 

beyond 4D vote space 

impractical

• Can handle high outlier ratio

RANSAC

• Minimal subset of 

correspondences to 

estimate model -> count 

inliers

• Represents uncertainty 

in image space

• Must search all data 

points to check for inliers 

each iteration

• Scales better to high-d 

parameter spaces

Kristen Grauman

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Video Google System

1. Collect all words within 

query region

2. Inverted file index to find 

relevant frames

3. Compare word counts

4. Spatial verification

Sivic & Zisserman, ICCV 2003

• Demo online at : 
http://www.robots.ox.ac.uk/~vgg/r

esearch/vgoogle/index.html

Query 

region

R
e
trie

v
e
d
 fra

m
e
s

Object retrieval with large vocabularies and fast 

spatial matching, Philbin et al., CVPR 2007

[Philbin CVPR’07]

Query Results from 5k Flickr images (demo available for 100k set)

World-scale mining of objects and events from 

community photo collections, Quack et al., CIVR 2008

Moulin Rouge

Tour Montparnasse Colosseum

Viktualienmarkt

Maypole

Old Town Square (Prague)

Auto-annotate by connecting to 

content on Wikipedia!
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B. Leibe

Example Applications

Mobile tourist guide
• Self-localization

• Object/building recognition

• Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]
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Web Demo: Movie Poster Recognition

http://www.kooaba.com/en/products_engine.html#

50’000 movie

posters indexed

Query-by-image

from mobile phone

available in Switzer-

land
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Recognition via feature 

matching+spatial verification

Pros: 

• Effective when we are able to find reliable features 

within clutter

• Great results for matching specific instances

Cons:

• Scaling with number of models

• Spatial verification as post-processing – not 

seamless, expensive for large-scale problems

• Not suited for category recognition.

Kristen Grauman

Summary

• Matching local invariant features

– Useful not only to provide matches for multi-view 
geometry, but also to find objects and scenes.

• Bag of words representation: quantize feature space to 
make discrete set of visual words

– Summarize image by distribution of words
– Index individual words

• Inverted index: pre-compute index to enable faster 
search at query time

• Recognition of instances via alignment: matching 

local features followed by spatial verification

– Robust fitting : RANSAC, GHT

Kristen Grauman

Coming up

• Read assigned papers, review 2

• Assignment 1 out now, due Feb 19

• Feb 15, 5-7 PM: CNN/Caffe tutorial


