Relative Attributes Devi Parikh and Kristen Grauman ICCV 2011

Experiment Presentation by Aishwarya Padmakumar

Motivation

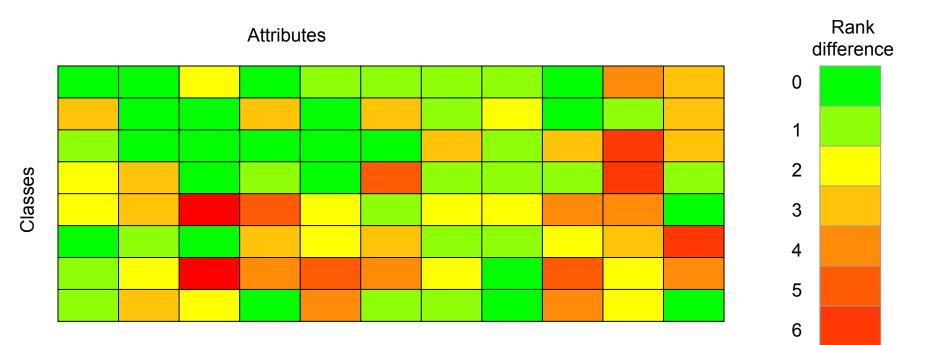
Sometimes it is hard to make a binary decision on whether an image satisfies an attribute. Comparisons are easier.

Image Source: https://filebox.ece.vt.edu/~parikh/relative.html

Code and data for following experiments obtained from : https://filebox.ece.vt.edu/~parikh/relative.html#code

Pubfig dataset

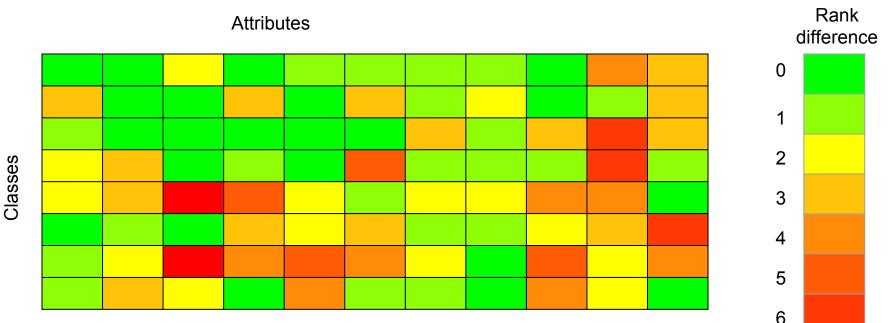
- → Public Figures Face Database Images of famous public figures
- \rightarrow Images of the same person are grouped into categories
- → Attributes Male, White, Young, Smiling, Chubby,
 VisibleForehead, BushyEyebrows, NarrowEyes, PointyNose,
 BigLips, RoundFace


Ground Truth - Ordering of categories for each attribute

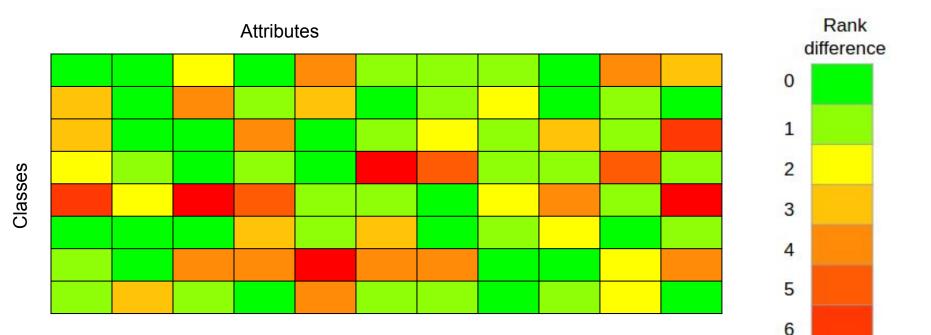
	Attr1	Attr2	Attr3	Attr4
Class1	1	2	3	3
Class2	2	1	1	1
Class3	3	3	2	2

Evaluating Ranking

- → Obtain training pairs using category ranking
- \rightarrow Train SVM to get a score for each image
- → Average scores of images in category to get score of category
- \rightarrow Rank categories accoridng to this score
- \rightarrow Compare to ground truth ranking


Ranking Prediction

7

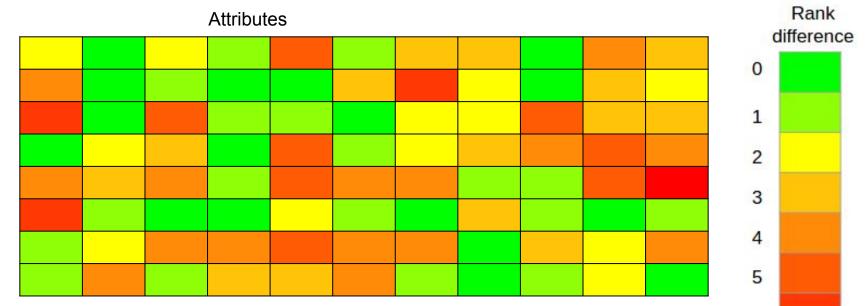

Varying the amount of training data

With original amount of training data

7

With 80% of original training data

7


With 60% of original training data

7

Classes

With 40% of original training data

Classes

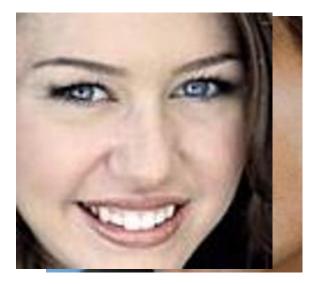
6 7

What sort of mistakes does it make?

Failure cases - Who has bigger lips?

Failure cases - Who has bigger lips?

Supposed to be the person on the right but certain expressions don't indicate this.

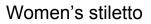

Failure cases - Who looks younger?

Failure cases - Who looks younger?

Supposed to be the girl on the right. Other images are more obvious but expression, make-up and lighting affect this.

Instance Level Supervision vs Category Level Supervision

WhittleSearch Dataset


- → Collected by: Adriana Kovashka, Devi Parikh, and Kristen Grauman
- → Publication: Whittle Search: Image Search with Relative Attribute Feedback, in CVPR 2012
- \rightarrow Dataset of shoes: 14658 images
- → Provide extracted features (GIST and colour LAB histogram), accounting for image orientation

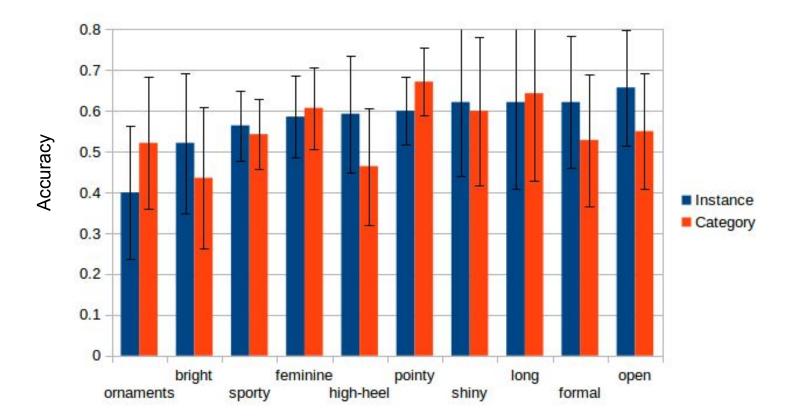
WhittleSearch Dataset

- → Category level ordering and instance level comparisons for each attribute
- → Attributes: pointy-at-the-front, open, bright-in-color, covered-with-ornaments, shiny, high-at-the-heel, long-onthe-leg, formal, sporty, feminine
- \rightarrow Instance level ordering obtained via MTurk

Examples

Women's Boots

Women's flats



Instance level supervision vs category level supervision

Why does training on category level information do well sometimes?

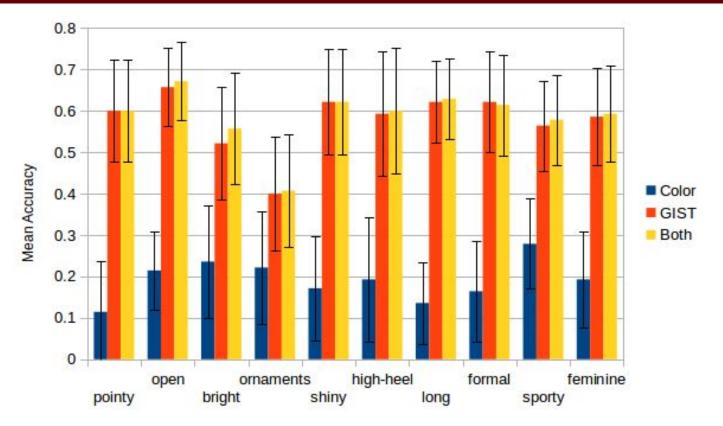
- → List of categories athletic_shoes, boots, clogs, flats, high_heels, pumps, rain_boots, sneakers, stiletto, wedding_shoes
- → Pointy, ornaments, long on the leg seem to be attributes that we can associate with some of these classes
- → Possibly category level labels result in more wellseparated data, making it easier to train an SVM (SVMs are sensitive to noise near the support vectors)

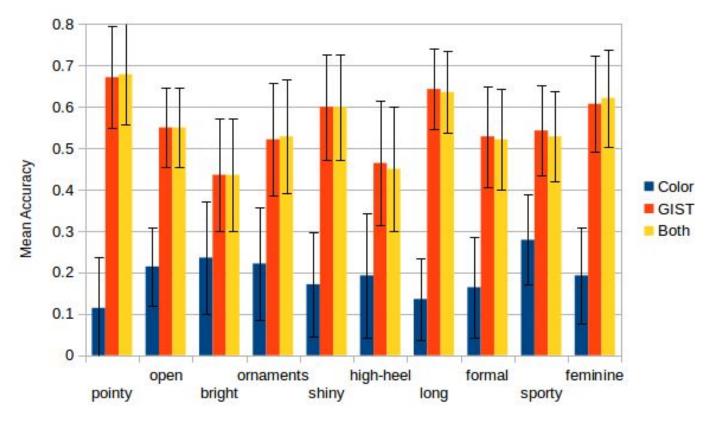
Some cases where the prediction differs

More Sporty: Ground truth - left; Instance based - left; Category based - right

Some cases where the prediction differs

More Sporty: Ground truth - left; Instance based - right; Category based - left


Some cases where the prediction differs


More Sporty: Ground truth - equal; Instance based - right; Category based - left

Usefulness of different types of features

Comparing GIST and colour features - instance comparisons

comparisons

Where GIST and the combination differ

More Bright: Ground truth - right; GIST - equal; Both - right

Where GIST and the combination differ

More Bright: Ground truth - left; GIST - equal; Both - right

Where colour and the combination differ

More Bright: Ground truth - right; Colour - equal; Both - right

Where colour and the combination differ

More Bright: Ground truth - equal; Colour - equal; Both - left

Relative Descriptions

Relative Descriptions

Relative Descriptions - Pointy at the front

Relative Descriptions - open

Relative Descriptions - bright in colour

Relative Descriptions - covered in ornaments

Relative Descriptions - shiny

Relative Descriptions - high at the heel

Relative Descriptions - long on the leg

Relative Descriptions - formal

Relative Descriptions - sporty

Relative Descriptions - feminine

Varying the number of images in between

Leave 1/16 of the images in between (formal)

Leave 1/8 of the images in between (formal)

Leave 1/4 of the images in between (formal)

Leave 1/2 of the images in between (formal)

