Relative Attributes Devi Parikh, Kristen Grauman

(a) Smiling

(b) **?**

(c) Not smiling

(d) Natural

(e) ?

(f) Manmade

Akanksha Saran CS381V Paper Presentation

Outline

- Motivation
- Contributions
- Technical Details
- Experiments
- Discussion Points
- Extensions

Outline

Motivation

- Contributions
- Technical Details
- Experiments
- Discussion Points
- Extensions

Slide Credit: Devi Parikh, Kristen Grauman

ALMONT -

Attributes

Is furry

Has four-legs

Legs shorter than horses'

Tail longer than donkeys'

Has tail

[Oliva 2001] [Ferrari 2007] [Lampert 2009] [Farhadi 2009] [Kumar 2009] [Wang 2009] [Wang 2010] [Berg 2010] [Branson 2010] [Parikh 2010] [ICCV 2011] ...

Binary

Is furry

Has four-legs

Legs shorter than horses'

Tail longer than donkeys'

Has tail

Mule ⁸

Binary

Is furry

Has four-legs

Legs shorter than horses'

Tail longer than donkeys'

Has tail

Mule ⁹

Relative

Is furry

Has four-legs

Legs shorter than horses'

Tail longer than donkeys'

Has tail

Mule¹⁰

Image Search

"Downtown Chicago"

Outline

- Motivation
- Contributions
 - Technical Details
 - Experiments
 - Discussion Points
 - Extensions

Contributions

- Relative attributes
 - Allow relating images and categories to each other
 - Learn ranking function for each attribute
- Novel applications
 - Zero-shot learning from attribute comparisons
 - Automatically generating relative image descriptions

Outline

- Motivation
- Contributions
- Technical Details
 - Experiments
 - Discussion Points
 - Extensions

Learning Relative Attributes

For each attribute a_m , open

Supervision is

Learning Relative Attributes

Learn a scoring function
$$r_m(\boldsymbol{x_i}) = \boldsymbol{w_m^T x_i}^{\text{features}}$$

Learned parameters

that best satisfies constraints:

$$orall (i,j) \in O_m : \boldsymbol{w}_m^T \boldsymbol{x}_i > \boldsymbol{w}_m^T \boldsymbol{x}_j$$

 $orall (i,j) \in S_m : \boldsymbol{w}_m^T \boldsymbol{x}_i = \boldsymbol{w}_m^T \boldsymbol{x}_j$

Learning Relative Attributes

Max-margin learning to rank formulation

$$\min \quad \left(\frac{1}{2} || \boldsymbol{w}_{\boldsymbol{m}}^{T} ||_{2}^{2} + C \left(\sum \xi_{ij}^{2} + \sum \gamma_{ij}^{2} \right) \right)$$
s.t. $\boldsymbol{w}_{\boldsymbol{m}}^{T} (\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) \geq 1 - \xi_{ij}, \forall (i, j) \in O_{m}$
 $| \boldsymbol{w}_{\boldsymbol{m}}^{T} (\boldsymbol{x}_{i} - \boldsymbol{x}_{j}) | \leq \gamma_{ij}, \forall (i, j) \in S_{m}$
 $\xi_{ij} \geq 0; \gamma_{ij} \geq 0$
Based on [Joachims 2002]

Image → Relative Attribute Score

Relative Zero-shot Learning

Training: Images from **S** seen categories and

Descriptions of **U unseen** categories

Age: Hugh>Clive>Scarlett

Jared > Miley

Smiling:

Miley > Jared

Need not use all attributes, or all seen categories Testing: Categorize image into one of S+U categories Slide Credit: Devi Parikh, Kristen Grauman

Relative Zero-shot Learning

Relative zero-shot learning

Can predict new classes based on their relationships to existing classes – without training images

Automatic Relative Image Description

Conventional binary description: not dense

Dense:

Not dense:

Automatic Relative Image Description

Density

Novel image

more dense than

Slide Credit: Devi Parikh, Kristen Grauman

less dense than

Automatic Relative Image Description Novel Density image ССНН<mark>Н</mark>С F*HH* М*F* F

more dense than Highways, less dense than Forests

Outline

- Motivation
- Contributions
- Technical Details
- Experiments
 - Discussion Points
 - Extensions

Datasets

Outdoor Scene Recognition (OSR)

[O<u>liva 200</u>1]

8 classes, ~2700 images, Gist 6 attributes: open, natural, etc.

Public Figures Face (PubFig) [Kumar 2009]

8 classes, ~800 images, Gist+color

11 attributes: white, chubby, etc.

Attributes labeled at category level

Baselines

Relative Zero-shot Learning

- Robustness:
 - Fewer comparisons to train relative attributes
 - More unseen (fewer seen) categories
- Flexibility in supervision:
 - 'Looseness' in description of unseen
 - -Fewer attributes used to describe unseen

Relative Zero-shot Learning

Figure 5. Zero-shot learning performance as fewer attributes are used to describe the unseen categories.

An attribute is more discriminative when used relatively

Automatic Relative Image Description

Binary (existing):

Not natural

Not open

Has perspective

Relative (proposed):

More natural than insidecity Less natural than highway

More open than street Less open than coast

Has more perspective than highway Has less perspective than insidecity

Automatic Relative Image Description

Binary (existing):

Not natural

Not open

Has perspective

Relative (proposed):

More natural than tallbuilding Less natural than forest

More open than tallbuilding Less open than coast

Has more perspective than tallbuilding

Human Studies: Which Image is Being Described?

Automatic Relative Image Description

Outline

- Motivation
- Contributions
- Technical Details
- Experiments
- Discussion Points
 - Extensions

Advantages

- Natural Descriptions: Leverages a natural mode of description
- Flexibility: Allows use of as many attributes for defining relations among as many classes

Image based based Attribute Ranking

Relative ordering for attributes are transferred to all images in a category

Image based based Attribute Ranking

Relative ordering for attributes are transferred to all images in a category

Image based based Attribute Ranking

Relative ordering for attributes are transferred to all images in a category

Image Search

Gaussian distribution in joint attribute space

Underlying distributions may be multi-modal

Fine-grained differences?

Can retaining the ranks for two very similar images/categories help identify them ?

male russet sparrow

male spanish sparrow

Outline

- Motivation
- Contributions
- Technical Details
- Experiments
- Strengths and Weaknesses
- Extensions

Extensions

- Relative attributes learned per image "Image Search with Interactive Feedback: Whittle Search", A. Kovashka, D. Parikh, K. Grauman
- Active Learning of Discriminative Classifiers through feedback from users
 "Simultaneous Active Learning of Classifiers & Attributes via Relative Feedback", A. Biswas, D.Parikh
- Use of binary and relative attributes together 'A horse has 4 legs'
- More expressive features instead of global features

To discriminate a large set of image categories "Discovering Spatial Extent of Relative Attributes", F.Xiao, Y.J. Lee

44

 Scalability to more categories and attribute labels

Thank you!