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Problem Definition (Continued)
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Flat Classification
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DAP
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IAP
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Experiments
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Outline
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● Intermediate Layer Representations
● Impact of overlap among training and test classes
● Impact of correlation among attributes
● Results on a new dataset - SUN Attribute Database



Intermediate Layer 
Representations

10



Setup
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● Took the same training/test split as the paper
● Visualized the intermediate representations generated by IAP

○ HeatMap of test classes vs training classes to visualize the training class layer
○ HeatMap of test classes vs attributes to visualize the attribute layer.



Original Confusion Matrix
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IAP Training Class Layer
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IAP Training Class Layer
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IAP Training Class Layer



IAP Attribute Layer
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IAP Attribute Layer
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Conclusions
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● Classes with high accuracy get mapped to similar training classes
● Classes with low accuracy do not get mapped to similar training classes

○ There aren’t similar enough classes
○ There are pretty similar classes but the algorithm doesn’t discover them

● Classes with high accuracy have good attribute representation
○ At least, one or a couple of attributes are discriminative enough and the class has a high score 

on it.

● Attributes with lower accuracy either have 
○ low score for relevant discriminating attribute
○ poor attribute representation - all attributes with high score are too general.



Overlapping Test and 
Train Classes

19



Setup
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● Took 40 training and 19 test classes with 9 overlapping classes
○ deer, bobcat, lion, mouse, polar+bear, collie, walrus, cow, dolphin

● Used the same feature space as the paper
● Visualized the training class layer representation, attribute layer 

representation and confusion matrix
● Overall test class accuracy decreased from 27.4% to 26.5%



Final Confusion Matrix
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Final Confusion Matrix
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Final Confusion Matrix
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IAP Training Classes Layer
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IAP Attribute Layer 
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IAP Attribute Layer 
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Conclusions
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● Overlapping classes get correctly mapped at the training class layer
● But attribute representation in this case ambiguates the situation

○ Loss of Information
○ The final test class ends up being wrong

● Overlapping classes are not easy instances for IAP if there exist other similar 
test classes



Impact of Correlation
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Setup
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● First plotted the 85 x 85 distance matrix where each entry is the cosine 
distance between the corresponding attributes.

○ Attributes are represented as class vectors (containing a score for each class in the dataset).

● Clustered the attributes using the above cosine distance metric.
○ Each cluster can be looked at as a Super Attribute

● Computed the variation of final test class accuracy with number of clusters



Correlation Among Attributes
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Accuracy vs Number of Clusters
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Confusion Matrix for Best Case - Worse Off Classes
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Confusion Matrix for Best Case - Same Classes
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Confusion Matrix for Best Case - Better Classes
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Examples of Super Attributes 
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'brown', 'furry', 'lean', 'tail', 'chewteeth', 'walks', 'fast', 'muscle', 'quadrapedal', 
'active', 'agility', 'newworld', 'oldworld', 'ground', 'smart', 'nestspot'

wikipedia
wikipedia



Conclusion
● For classes that were pretty ‘close’, clustering actually leads to decrease in 

the accuracy.
○ e.g. Persian Cat and Leopard were earlier identified correctly but now both get mapped to 

leopard.

● For many other classes, clustering helps in removing noise and avoid 
accidental similarities.

○ e.g. Rat initially had  high score along ‘paws’, ‘claws’ which was probably why it was getting 
mapped to leopard

○ After clustering, it will no longer get mapped to the super attribute containing [ ‘paws’,’claws’] 
since the super attribute also contains many other attributes not relevant to it.

○ More likely to get mapped to the super attribute containing [‘brown’, ‘furry’,’tail’,’chewteeth’,’
agility’] which makes it easier to identify.
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SUN Attribute 
Database
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Description of Database1 and Experiment
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● Around 14000 images of 600 odd scene categories.
○ Categories such as airport, jail, kitchen, waterfall etc.

● 102 scene attributes
○ Attributes describe what objects those scenes contain as well as the activities performed
○ Attributes include biking, hiking, studying, trees etc.

● Split the 600 odd classes into 550 randomly chosen train classes and around 
60 test classes 

● Attained only 4.7% accuracy on the test classes

https://cs.brown.edu/~gen/sunattributes.html



Results
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Conclusion
● Results are much worse than on the Animals with Attribute dataset
● One of the reasons is number of training samples per class

○ Animals with Attributes - 30,000 images for 50 classes
○ SUN Attribute DB - 14000 images for around 600 classes

● Predicate Matrix is sparser for the SUN Attribute DB case
● Possibly easier to specify discriminating attributes for animals than scenes
● IAP has a tendency to output only a small percentage of all test classes

○ In the original paper, 5 of the 10 test classes have zero weight
○ This tendency might be getting magnified because of the sparseness in the data
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Questions
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