3D ShapeNets: A Deep Representation for Volumetric Shape Modeling

by Wu, Song, Khosla, Yu, Zhang, Tang, Xiao

presented by Abhishek Sinha

3D Shape Prior

3D Shape Prior

3D Shape Prior

• Problem

- Problem
- Motivation

- Problem
- Motivation
- Desirable Properties for Representation

- Problem
- Motivation
- Desirable Properties for Representation
- Architecture

- Problem
- Motivation
- Desirable Properties for Representation
- Architecture
- Dataset

- Problem
- Motivation
- Desirable Properties for Representation
- Architecture
- Dataset
- Applications

- Problem
- Motivation
- Desirable Properties for Representation
- Architecture
- Dataset
- Applications
- Extensions

- Problem
- Motivation
- Desirable Properties for Representation
- Architecture
- Dataset
- Applications
- Extensions
- Discussion Points

Problem

Learn 'Useful' 3D shape representations from images

Motivation

3D Shape Representation

Desirable Properties

Data-driven

Generic

Compositional

Versatile

Generic Compositional

Compositiona

Data-driven

building blocks

full object

Architecture

3D Shape as Volumetric Representation

3D Shape as Volumetric Representation

mesh

3D Shape as Volumetric Representation

mesh

3D Shape as Volumetric Representation

3D ShapeNets

Convolutional Deep Belief Network $n(\mathbf{x}, y)$

Belief Network $p(\mathbf{x}, y)$ Slide Credit: Wu, Song et al. 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR 2015

3D ShapeNets

A Deep Belief Network is a generative graphical model that describes the distribution of input x over class y.

Belief Network $p(\mathbf{x}, y)$ Slide Credit: Wu, Song et al. 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR 2015

A Deep Belief Network is a generative graphical model that describes the distribution of input x

- over class y.
 Convolution to enable compositionality
 - No pooling to reduce reconstruction error

A Deep Belief Network is a generative graphical model that describes the distribution of input x

- over class y.
 Convolution to enable compositionality
 - No pooling to reduce reconstruction

configurations

Layer 1-3	convolutional RBM	
Layer 4	fully connected RBM	
Layer 5	multinomial label + Bernoulli feature form an associate memory	

Slide Credit: Wu, Song et al. 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR 2015

error

Convolutional Deep Belief Network $n(\mathbf{x}, y)$

3D ShapeNets ≠ CNNs

Convolutional Deep

17

3D ShapeNets ≠ CNNs

p(y|x)

3D voxel input

Convolutional Deep

17

3D ShapeNets \neq **CNNs** p(x, y) p(y|x)

Convolutional Deep Belief Network $p(\mathbf{x}, y)$

17

3D ShapeNets ≠ CNNs p(x,y)p(y|x)p(y|x)discriminative process p(x|y)

generative process

* 3D ShapeNets can be converted into a CNN, and discriminatively trained with back-propagation.

Training

Maximum Likelihood Learning

Convolutional Deep

Training

Maximum Likelihood Learning Layer-wise pre-training: Lower four layers are trained by CD Last layer is trained by FPCD[1] Fine-tuning: Wake sleep[2] but keep weights tied

[1] Tijmen, et al. "Using fast weights to improve persistent contrastive divergence."[2] Hinton, et al "A fast learning algorithm for deep belief nets." Neural computation

18

Training

Maximum Likelihood Learning Layer-wise pre-training: Lower four layers are trained by CD Last layer is trained by FPCD[1] Fine-tuning: Wake sleep[2] but keep weights tied

[1] Tijmen, et al. "Using fast weights to improve persistent contrastive divergence."[2] Hinton, et al "A fast learning algorithm for deep belief nets." Neural computation

18

Sampling

Slide Credit: Wu, Song et al. 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR 2015

19

Sampling

20

20

Dataset

Query Keyword: common object categories from the SUN database that

contain no less than 20 object instances per category

3D Warehouse Vobi 3D

Query Keyword: common object categories from the SUN database that

contain no less than 20 object instances per category

Yobi3D **3D Warehouse**

Is this a chair? Submit (128 images left) Instruction

Definition: A separate seat for one person, typically with a back and four legs..

151,128 models

660 categories

Applications

26

Slide Credit: Wu et al

Slide Credit: Wu et al

26

Training on CAD models and **no** discriminative tuning!

	all
[29] Depth	0.376
NN	0.374
ICP	0.471
3D ShapeNets	0.437
3D ShapeNets fine-tuned	0.579
[29] RGB	0.334
[29] RGBD	0.448

[29] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng.

Convolutional-recursive deep learning for 3d object classification. In NIPS 2012.

View Planning for Recognition

View Planning for Recognition

Slide Credit: Wu et al

Slide Credit: Wu et al

	all
Ours	0.80
Max Visibility	0.78
Furthest Away	0.69
Random Selection	0.72

Recognition Accuracy from Two Views.

Based on the algorithms' choice, we obtain the actual depth map for the next view and recognize the objects using two views by our 3D ShapeNets.

	all
Ours	0.80
Max Visibility	0.78
Furthest Away	0.69
Random Selection	0.72

Recognition Accuracy from Two Views.

Based on the algorithms' choice, we obtain the actual depth map for the next view and recognize the objects using two views by our 3D ShapeNets.

Our algorithm stands out as the uncertainty of the first view increases 30

Slide Credit: Wu, Song et al. 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR 2015

31

31

Slide Credit: Wu, Song et al. 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR 2015

31

Mesh Classification & Retrieval

10 classes	SPH [18]	LFD [8]	Ours
classification	79.79 %	79.87 %	83.54%
retrieval AUC	45.97%	51.70%	69.28 %
retrieval MAP	44.05%	49.82%	68.26 %
40 classes	SPH [18]	LFD [8]	Ours
classification	68.23%	75.47%	77.32%
retrieval AUC	34.47%	42.04%	49.94 %
retrieval MAP	33.26%	40.91%	49.23%

Mesh Classification & Retrieval

10 classes	SPH [18]	LFD [8]	Ours
classification	79.79 %	79.87 %	83.54%
retrieval AUC	45.97%	51.70%	69.28 %
retrieval MAP	44.05%	49.82%	68.26 %
40 classes	SPH [18]	LFD [8]	Ours
classification	68.23%	75.47%	77.32%
retrieval AUC	34.47%	42.04%	49.94 %
retrieval MAP	33.26%	40.91%	49.23%

2.5D object recognition

	all
[29] Depth	0.376
NN	0.374
ICP	0.471
3D ShapeNets	0.437
3D ShapeNets fine-tuned	0.579
[29] RGB	0.334
[29] RGBD	0.448

[29] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng. Convolutional-recursive deep learning for 3d object classification. In NIPS 2012. Slide Credit: Wu et al

10 Classes Results

Extensions

- Include RGB information in representation
- 3D Segmentation
- Improve for non-rigid 3D objects

Discussion Points

- Is the network deep enough?
 - 30x30x30 = 27000 vs 256x256 = 65000 for Image Net
 - 150K training examples vs millions for Image Net

• Won't removal of max-pooling layers hurt performance on classification tasks?

Algorithm	ModelNet40 Classification (Accuracy)	ModelNet40 Retrieval (mAP)	ModelNet10 Classification (Accuracy)	ModelNet10 Retrieval (mAP)
MVCNN [3]	90.1%	79.5%		
VoxNet [2]	83%		92%	
DeepPano [4]	77.63%	76.81%	85.45%	84.18%
3DShapeNets [1]	77%	49.2%	83.5%	68.3%

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao. 3D ShapeNets: A Deep Representation for Volumetric Shapes. CVPR2015.
 D. Maturana and S. Scherer. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. IROS2015.
 H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convolutional Neural Networks for 3D Shape Recognition. ICCV2015.
 B Shi, S Bai, Z Zhou, X Bai. DeepPano: Deep Panoramic Representation for 3-D Shape Recognition. Signal Processing Letters 2015.

38

- Any other systems that use binary units with approximate training and inference techniques rather than standard back-prop?
 - Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554
 - Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton.
 "Restricted Boltzmann machines for collaborative filtering."
 Proceedings of the 24th international conference on Machine learning. ACM, 2007.

- Are there better ways for representing 3D Shapes. In particular, doesn't the voxel representation have the bottleneck of cubic dependency on grid size?
 - Yes. Su, Majhi et al that tries to recognize 3D shapes from multiple 2D views instead of voxel representation and get better results for classification .
- Are there other 3D CAD model datasets
 - 3D Warehouse. <u>https://3dwarehouse.sketchup.com/</u>
- Manually removing clutter from 3D CAD models a problem
- Did not address non-rigid objects sufficiently.
 - Even the 40 model classification dataset seemed to contain only 4 non-rigid categories persons, plant, sofas, curtains.

Appendix

Contrastive divergence learning: A quick way to learn an RBM

Start with a training vector on the visible units.

Update all the hidden units in parallel

Update all the visible units in parallel to get a "reconstruction".

Update all the hidden units again.

$$\Delta w_{ij} = \varepsilon (\langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^1)$$

This is not following the gradient of the log likelihood. But it works well. It is approximately following the gradient of another objective function. 43

The wake-sleep algorithm for an SBN

- Wake phase: Use the recognition weights to perform a bottom-up pass.
 - Train the generative weights to reconstruct activities in each layer from the layer above.
- Sleep phase: Use the generative weights to generate samples from the model.
 - Train the recognition weights to reconstruct activities in each layer from the layer below.

