LSTMS OVERVIEW

Subhashini Venugopalan

NEURAL NETWORKS

B Xt

RECURRENT NEURAL NETWORKS

They are networks with loops.

[Elman '90]

Image Credit: Chris Olah

UN-ROLL THE LOOP

Recurrent Neural Network "unrolled in time"

 h_1 h_2

- Each time step has a layer with the same weights.
- The repeating layer/module is a sigmoid or a tanh.
- Learns to model $(h_t | x_1, ..., x_{t-1})$

Image Credit: Chris Olah

SIMPLE RNNS

$$h_t = g(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$z_t = g(W_{hz}h_t + b_z)$$

Image Credit: Chris Olah

sigmoid or tanh

PROBLEMS WITH SIMPLE RNNS

- Can't seem to handle "long-term dependencies" in practice
- Gradients shrink through the many layers (Vanishing Gradients)

[Hochreiter '91] [Bengio et. al. '94]

Image Credit: Chris Olah

[Hochreiter and Schmidhuber '97]

Image Credit: Chris Olah

Memory Cell: Core of the LSTM Unit Encodes all inputs observed

[Hochreiter and Schmidhuber '97] [Graves '13]

Memory Cell: Core of the LSTM Unit Encodes all inputs observed

Gates: Input, Output and Forget Sigmoid [0,1]

[Hochreiter and Schmidhuber '97] [Graves '13]

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1})$$
$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1})$$

Update the Cell state

$$t = \underline{f_t \odot c_{t-1} + i_t \odot \phi(W_{xc}x_t + W_{hc}h_{t-1})}$$

Learns long-term dependencies

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1})$$
$$h_t = o_t \odot \phi(c_t)$$

[Hochreiter and Schmidhuber '97] [Graves '13]

CAN MODEL SEQUENCES

- Can handle longer-term dependencies
- Overcomes Vanishing Gradients problem
- GRUs Gated Recurrent Units is a much simpler variant which also overcomes these issues. [Cho et. al. '14]

PUTTING THINGS TOGETHER

Encode a sequence of inputs to a vector.

Decode from the vector to a sequence of outputs. $Pr(x_t | x_1, ..., x_{t-1})$

Image Credit: Sutskever et. al.

SOLVE A WIDER RANGE OF PROBLEMS

Image Captioning

Vinyals et. al. '15, Donahue et. al. '15 Activity Recognition

Donahue et. al. '15

Sequence to Sequence

Machine TranslationSutskever et. al. '14, Cho et. al. '14Speech RecognitionGraves & Jaitly '14Video DescriptionV. et. al. '15, Li et. al. '15VQA, POS tagging, ...33 of 4 papers to be discussed this class

Image Credit: Andrej Karpathy

RESOURCES

- Graves' paper LSTMs explanation. Generating sequences with recurrent neural networks. Applications to handwriting and speech recognition.
- Chris' Blog LSTM unit explanation.
- Karpathy's Blog Applications.
- Tensorflow and Caffe Code examples.

Sequence to Sequence Video to Text

Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue Raymond Mooney, Trevor Darrell, Kate Saenko

Objective

A monkey is pulling a dog's tail and is chased by the dog.

Recurrent Neural Networks (RNNs) can map a vector to a sequence.

S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, K. Saenko

2. Take activations from layer before classification

Frames: RGB

Dataset: Youtube

- ~2000 clips
- Avg. length: 11s per clip
- ~40 sentence per clip
- ~81,000 sentences

- A man is **walking** on a **rope**.
- A man is **walking** across a **rope**.
- A man is **balancing** on a **rope**.
- A man is **balancing** on a **rope** at the beach.
- A man walks on a tightrope at the beach.
- A man is **balancing** on a **volleyball net**.
- A man is walking on a rope held by poles
- A man **balanced** on a **wire**.
- The man is **balancing** on the **wire**.
- A man is **walking** on a **rope**.
- A man is **standing** in the sea shore.

Results (Youtube)

METEOR: MT metric. Considers alignment, para-phrases and similarity.

Correct descriptions.

S2VT: A man is doing stunts on his bike.

S2VT: A herd of zebras are walking in a field.

S2VT: A young woman is doing her hair.

S2VT: A man is shooting a gun at a target.

Relevant but incorrect descriptions.

S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

S2VT: A cat is trying to get a small board.

S2VT: A man is spreading butter on a tortilla. S2V

Irrelevant descriptions.

S2VT: A man is pouring liquid in a pan.

S2VT: A polar bear is walking on a hill.

S2VT: A man is doing a pencil.

S2VT: A black clip to walking through a path.

(c)

Evaluation: Movie Corpora

MPII-MD

- MPII, Germany
- DVS alignment: semiautomated and crowdsourced
- 94 movies
- 68,000 clips
- Avg. length: 3.9s per clip
- ~1 sentence per clip
- 68,375 sentences

M-VAD

- Univ. of Montreal
- DVS alignment: automated speech extraction
- 92 movies
- 46,009 clips
- Avg. length: 6.2s per clip
- 1-2 sentences per clip
- 56,634 sentences

Movie Corpus - DVS

CC: Queen: "Which estate?" DVS: Looking troubled, the Queen descends the stairs.

She then puts a head

scarf on

... and gets into the driver's side of a nearby Land Rover.

bodyguards Three into quickly jump a nearby car and follow her.

Processed:

Looking troubled, someone descends the stairs.

Someone rushes into the courtyard. She then puts a head scarf on

Rover The Land pulls away.

Results (MPII-MD Movie Corpus)

Results (M-VAD Movie Corpus)

Meteor (%)

8

S2VT: Someone sits on his bed, his head on his bed, his eyes open and he takes his hand. GT: hiking up his pants, his father sits on the bed's edge and leans an arm over someone's legs.

M-VAD: <u>https://youtu.be/pEROmjzSYaM</u>

Discussion

- What are the advantages/drawbacks of this approach?
 - End-to-end, annotations
- Detaching recognition and generation.
- Why only METEOR (not BLEU or other metrics)?
- Domain adaptation, Re-use RNNs (youtube -> movies, activity recognition)
- Languages other than English.
- Features apart from Optical Flow, RGB; temporal representation.

Sequence to Sequence - Video to Text (S2VT) S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, K. Saenko

Edit-Distance	k = 0	k <= 1	k <= 2	k <= 3
MSVD	42.9	81.2	93.6	96.6
MPII-MD	28.8	43.5	56.4	83.0
MVAD	15.6	28.7	37.8	45.0

Table 3. Percentage of generated sentences which match a sentence of the training set with an edit (Levenshtein) distance of less than 4. All values reported in percentage (%).

Code and more examples <u>http://vsubhashini.github.io/s2vt.html</u>

Sequence to Sequence - Video to Text (S2VT) S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, K. Saenko