City Forensics

By Sean M. Arietta, Alexei A. Efros, Ravi Ramamoorthi, and Maneesh Agrawala

CS 381V Experiment Presentation

Experiments Overview

- What **visual elements** distinguish a **university campus**?
 - a. Mining discriminative image patches.
 - b. Classifying campuses:
 - Which visual elements work best?
 - Examples where the algorithm succeeds and fails.
- **Campus forensics**: can we predict non-visual attributes?
 - a. Predicting student enrollment.
 - b. What visual elements work?

Getting Data

- Google Maps API for Street View images:
 - <u>https://maps.googleapis.com/maps/api/streetview?size=640x640&location=</u>30.289563,-97.7391009&heading=0
- Linearly interpolate coordinates using Google Maps.

Getting Data

~1200 images per campus.

A

तत्वत्वा तत्वत्वा

Extracting Patches

48 patches HOG + Lab descriptors

Experiment 1: Patch Mining

- For each campus:
 - a. Randomly select 10k high-contrast patches.
 - b. Remove patches with high overlap with top 50 nearest neighbors.
 - c. Remove patches with more than 5 of the top 20 nearest neighbors.

Experiment 1: Set 1

VS.

Randomly sampled patches.

Removed patches that have too much overlap with nearest neighbors.

Removed patches with too many negative nearest neighbors.

Experiment 1: Texas A&M

Experiment 1: Texas A&M

Experiment 1: Stanford

Experiment 1: Stanford

Experiment 1: Set 2

VS.

VS.

Experiment 1: CMU

Experiment 1: CMU

Experiment 1: NYU

Experiment 1: NYU

Experiment 1: Harvard

Experiment 1: Harvard

Experiment 1: Comparing Patches

Experiment 1: Texas A&M

Experiment 1: Stanford

Experiment 1: CMU

Experiment 1: CMU

Experiment 1: NYU

Experiment 1: Harvard

Experiment 1: Side-by-Side

"

Experiment 1: Considerations

- Weather at time of Street View photography.
 - Color differences.
- Campus size and street coverage.
 - Interior images.
 - Panorama artifacts.
 - Not enough information.

- Classify **top 1000 patches** for each campus.
- 800/200 training/validation split.

SVM Results:

CNN Results:

	\	Ā M	S
-	0.58	0.10	0.32
Ā ∭	0.15	0.57	0.28
E	0.24	0.23	0.53

Experiment 2: Misclassifications

CNN Results:

	Y	A M	S	£	لاً NYU	192: 180: 1251
	0.41	0.06	0.11	0.06	0.18	0.18
ATM.	0.04	0.58	0.09	0.16	0.11	0.03
	0.12	0.10	0.49	0.10	0.14	0.05
£	0.08	0.11	0.14	0.59	0.06	0.02
۴ NYU	0.05	0.10	0.11	0.10	0.63	0.01
10 10 105	0.19	0.10	0.14	0.12	0.15	0.30

- Classify **top 1000 patches + their top 5 nearest neighbors** for each campus.
- 4800/1200 training/validation split.

CNN Results:

		A]M	ß		۴ NYU	192: 501 1151
	0.41	0.06	0.11	0.06	0.18	0.18
A M	0.04	0.58	0.09	0.16	0.11	0.03
\$	0.12	0.10	0.49	0.10	0.14	0.05
£	0.08	0.11	0.14	0.59	0.06	0.02
۴ NYU	0.05	0.10	0.11	0.10	0.63	0.01
02 22	0.19	0.10	0.14	0.12	0.15	0.30

		Ă M	S		۳ NYU	1921 (201) 1231
+	0.63	0.02	0.05	0.02	0.09	0.19
A <u>I</u> M	0.05	0.51	0.19	0.05	0.13	0.07
\$	0.14	0.05	0.49	0.08	0.12	0.12
£	0.08	0.05	0.03	0.66	0.12	0.06
۴ NYU	0.10	0.04	0.05	0.04	0.69	0.08
52 52: 55	0.18	0.04	0.06	0.06	0.14	0.52

• Student enrollment: high or low?

- Train on top 1000 patches + 5 nearest neighbors.
- Test on new data set.

UT Austin	50,950	High
Texas A&M	58,577	High
Stanford	16,136	Low
CMU	13,285	Low
NYU	57,245	High
Harvard	21,000	Low

- Tested on new data (10k high-contrast patches).
 - Validation score (old data): 71.6%.
 - Test score (new data): **62.6%**.

Arizona State	83,308	High
Princeton	8,125	Low

Arizona State (high)

Correct

Wrong

Princeton (low)

Correct

Wrong

Discussion / Future Experiments

- Patches vs. whole images?
- Using SVMs: could it work?
- Experimental limitations:
 - *Small sample size (campuses are relatively small).
 - CPU time limitations.

References

[1] Arietta, Sean M., et al. "City forensics: Using visual elements to predict non-visual city attributes."*Visualization and Computer Graphics, IEEE Transactions on* 20.12 (2014): 2624-2633.

[2] Doersch, Carl, et al. "What makes paris look like paris?." *ACM Transactions on Graphics* 31.4 (2012).