A Discriminatively Trained, Multiscale, **Deformable Part Model**

by Pedro Felzenszwalb, David McAllester, and Deva Ramanan

CS381V Visual Recognition - Paper Presentation

Deformable objects

Images from D. Ramanan's dataset

Slide credit: Duan Tran

Deformable objects

Images from Caltech-256

Slide credit: Duan Tran

Deformable Part Model

- Introduced by Fischler and Elschlager in 1973
- Part-based models:
 - Each part represents local visual properties
 - "Springs" capture spatial relationships

Matching model to image involves joint optimization of part locations "stretch and fit"

> Slide credit: Pedro F. Felzenszwalb

Deformable Part Model

Root Filter

Part Filters

Deformation Model

Step 1: HOG Pyramid

Step 1: HOG Pyramid

• Normalize w.r.t. the sum of histogram values in each 2 x 2 block containing the cell.

4 x 9 descriptor:

Step 1: HOG Pyramid

Filters

- Filters are rectangular templates defining weights for features
- Score is dot product of filter and subwindow of HOG pyramid

Object Hypothesis

Multiscale model captures features at two-resolutions

Slide credit: Pedro F. Felzenszwalb

Training

- Training data consists of images with labeled bounding boxes
- Need to learn the model structure, filters and deformation costs

Step 2: Initialize Root Filter

Step 2: Train Root Filter

Unscaled Image

Find best placement in HOG pyramid.

At least 50% overlap w/ ground truth.

Step 2 Summary

- 1. Set filter size based on statistics in the data.
- 2. Train on unoccluded examples with SVM.
 - Scale each example to match the filter size.
 - Random subwindows of negative images give negative examples.
- 3. Find the best filter placement in the HOG pyramid for each training image.
 - Un-scaled training images.
 - At least 50% overlap.
- 4. Re-train using best placements.
 - Same negatives as before.
 - Iterate twice.

Step 3: Initialize Part Filters

Trained Root Filter

- Train latent SVM on the full model:
 - $\circ \qquad \beta = (F_0, F_1, ..., F_6) (a_1, b_1, ..., a_6, b_6) \text{ are model parameters.}$

Step 3: Train Object Model

Step 3 Summary

- 1. Initialize 6 parts.
 - Position in areas of highest energy of root filter.
- 2. Train latent SVM on the full model:
 - $\beta = (F_0, F_1, ..., F_6, a_1, b_1, ..., a_6, b_6)$ are model parameters.
 - For each positive example, find best overall placement z.
 - Use high-scoring regions in negative images as hard negatives.
 - Iterate 10 times. Each time cache as many hard negatives as can fit into memory.
 - Remove no-longer hard negatives.

SVM Objective:
$$\beta^*(D) = \underset{\beta}{\operatorname{argmin}} \lambda ||\beta||^2 + \sum_{i=1}^n \max(0, 1 - y_i f_{\beta}(x_i))$$

Labeled training data (x_i, y_i) .
Score of placement z
 $f_{\beta}(x) = \underset{z \in Z(x)}{\max} \frac{\beta \cdot \Phi(x, z)}{\beta \cdot \Phi(x, z)}$

Results

- Decent performance:
 - PASCAL 2007 challenge.
 - First place in 10/20 classes.
 - \circ Second place in 6/20.
- Fast:
 - 3-4 hours training.
 - "2s evaluation.

Car Model

Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. "A discriminatively trained, multiscale, deformable part model." *Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on.* IEEE, 2008. Felzenszwalb, Pedro F., et al. "Object detection with discriminatively trained part-based models." *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 32.9 (2010): 1627-1645.

Person

Bottle

Bike

car

horse

sofa

Component Analysis

Best overall results with all three components.

Slide credit: Pedro F. Felzenszwalb

Conclusion

- HOG pyramid representation.
- Root filter + part filters + latent placement variables.
 - Train with latent SVM.
- Hard negative mining.

Possible extensions?

- Deeper part hierarchies (parts of parts).
- Multiple viewpoint models (front, side, back, etc.).
- 3D pose estimation.
- Visual words for parts: multi-class detection.

Object Hypothesis Computation

Felzenszwalb, Pedro F., et al. "Object detection with discriminatively trained part-based models." Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.9 (2010): 1627-1645.

</presentation>