## PanoContext Model A Whole-room 3D Context Model for Panoramic Scene Understanding

by Yinda Zhang, Shuran Song, Ping Tan, Jianxiong Xiao

Presented by: William Xie

## **Existing Context models**

Torralba, Sinha (2001)



Fink & Perona (2003)

| A. eye<br>feature<br>from | C. face<br>feature<br>from <i>face</i> |
|---------------------------|----------------------------------------|
| raw<br>image              | detection<br>image                     |





D. eye feature from eye detection

Desai, Ramanan, and Fowlkes (2009)

image



Carbonetto, de Freitas & Barnard (2004)



Sudderth, Torralba, Wilsky, Freeman (2005)



Torralba Murphy Freeman (2004)



Heitz and Koller (2008)





Rabinovich et al (2007)



Kumar, Hebert (2005)



|         | aero | bike | bird | boat | bottle | bus  | car  | cat  | chair | cow  | table | dog  | horse | mbik |
|---------|------|------|------|------|--------|------|------|------|-------|------|-------|------|-------|------|
| BB      | .339 | .381 | .067 | .099 | .278   | .229 | .331 | .146 | .153  | .119 | .124  | .066 | .322  | .366 |
| context | .351 | .402 | .117 | .114 | .284   | .251 | .334 | .188 | .166  | .114 | .087  | .078 | .347  | .395 |

DPM on PASCAL VOC [Felzenszwalb et al.]

Improvement on PASCAL <1.5% slide credit: Zhang et al.













# Why didn' context help?

# Why didn' context help?

Perhaps we are not using the right data

## PASCAL VOC

- On average: 1.5 object classes and 2.7 object instances per image
- Average camera field of view: 40° 60° horizontal

## Human Vision

- 180° horizontal field of view
- Ability to see depth
- Ability to change viewpoint

## Remedy





Input: Panorama



Input: Panorama





Output: 2D projected result





Krizhevsky, Alex, et al. "Imagenet classification with deep convolutional neural networks." NIPS. 2012.

- Vanishing point estimation for panoramas
- Room layout hypothesis generation
- 3D object hypotheses generation
- Whole-room scene hypotheses generation
- Data-driven holistic ranking

- Vanishing point estimation for panoramas
- Room layout hypothesis generation
- 3D object hypotheses generation
- Whole-room scene hypotheses generation
- Data-driven holistic ranking





## Generate a pool of hypotheses



## Generate a pool of hypotheses







#### Line segments detection Algorithm



#### Hough transform for vanishing point



#### Hough transform for vanishing point

#### Classify a vanishing direction for each line





Source: Wikipedia, Emaze





Sample 5 line segments to generate a room layout





Sample 5 line segments to generate a room layout





Sample 5 line segments to generate a room layout





Sample 5 line segments to generate a room layout





Sample 5 line segments to generate a room layout





Sample 5 line segments to generate a room layout



#### Pixel-wise surface direction estimation



Line segments



Line segments







Surface normal estimation





Surface normal estimation







Surface normal estimation



#### Consistency Score: 0.770





Surface normal estimation



#### Consistency Score: 0.770





Surface normal estimation



#### Consistency Score: 0.770

0.711





Surface normal estimation



#### Consistency Score: 0.770

0.711





Surface normal estimation



#### Consistency Score: 0.770

0.711







Surface normal estimation



#### Consistency Score: 0.770

0.711







Surface normal estimation



#### Consistency Score: 0.770

0.711





Surface normal estimation



#### Consistency Score: 0.770

0.711

Slide credit: Zhang et al.

**Top 50** 

only

# Generate a pool of hypotheses



#### **Cuboid detection**



#### **Cuboid detection**



#### Fitted cuboids

#### **Cuboid detection**

#### DPM-esque

Rectangle detector



Segmentation-based





Segmentation

Selective search

RANSAC fitting 6 rays and 3 vanishing points



Rectangle detection



Fitted cuboid projection

Largest IoU with the segment





70% Accuracy

bed



#### nightstand



painting



#### Pairwise constraint



# Generate a pool of hypotheses





#### Randomly sample a room layout

#### With P(layout) ~ normal consistency score



#### Randomly sample a room layout

#### With P(layout) ~ normal consistency score

Decide number of object based on prior distribution:

| paintin | 2 |
|---------|---|
| bed     | 1 |
| desk    | 1 |
| nightst | 1 |
| mirror  | 1 |
| sofa    | 1 |
| tv      | 1 |
| window  | 1 |

Decide number of object Decide object sampling sequence based on prior distribution: based on bottom up scores:

| paintin | 2 |
|---------|---|
| bed     | 1 |
| desk    | 1 |
| nightst | 1 |
| mirror  | 1 |
| sofa    | 1 |
| tv      | 1 |
| window  | 1 |



#### Sample a **bed** in empty room first...



#### Bottom-up score as bed

Sample a **bed** in empty room first...



Randomly select one according to **bottom up** priority **T** rectangle detection score, semantic classifier score

Then, sample a nightstand given a bed



Randomly select one according to the bottom up **+ pair-wise** priority mean distance to the K nearest neighbors

#### Pairwise constraint



Keep on sampling until finishing the list...



List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list...



List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list...



List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list...



List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list...



List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list...



List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list...



List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list...



Whole-room sampling is finished.

### Holistic ranking

### Learn a linear SVM for scoring and take the best





### Holistic ranking

### Learn a linear SVM for scoring and take the best





### Holistic ranking

### Learn a linear SVM for scoring and take the best









= bottom-up feature +

top-down feature



= bottom-up feature +

top-down feature



Hypothesis





= bottom-up feature +

### top-down feature









Ground Truth N









Hypothesis



1.40

0.90



= bottom-up feature +

### top-down feature





Ground Truth 2

....

Ground Truth N









1.40



Hypothesis

Centroid distance, IoU, semantic type consistency

Slide credit: Zhang et al.

0.90



### = bottom-up feature +

### top-down feature



Hypothesis





A ground truth room







**Transformed ground truth** 













|   |   |   | r |   |
|---|---|---|---|---|
| - |   | Ó | - |   |
|   |   |   |   | E |
|   | - |   |   |   |



### = bottom-up feature +





Hypothesis





A ground truth room

### **Transformed ground truth**



### **Final outputs**



### **Final outputs**



# How does 3D context help?

- Helps to decide sizes of objects
- Helps to decide number of objects
- Helps to constrain relative position



DPM: Wrong relative position

Our detection

# Context v.s. Appearance

- Context is as powerful as local appearance for detection
- Context is complementary with local appearance bed



# Context v.s. Appearance

- Context is as powerful as local appearance for detection
- Context is complementary with local appearance bed



# Is larger FOV helpful for room layout estimation?



#### Is larger FOV better for context? 0.7 0.6 [0.67] bed [0.37] painting 0.36] mirror 0.5 F-score for Object Detection 0.30] nightstand 0.21] tv 0.06] chair 0.4 0.3 0.2 0.1 0└\_ 360 180 120 90 60 30 0 Field of View (degree)

# My Take

- Elements of the ensemble could be valuable
- Too data driven, hard to generalize
- Future: relax the cuboid constraints, try other ways to integrate visual recognition in the pipeline

# Discussion

- How can the model be generalized to other scene categories (e.g. outdoor)?
- Performance on deformable or non-axis aligned objects?
- Chairs and other non-standard layout objects?
- Indoor understanding and VQA?

# Is context important in sampling and ranking?



#### Table 2: Object detection performance (a) bedroom

| object type          | bed   | desk  | window | mirror | door  | nightstand | wardrobe | cabinet | painting | tv    | chair | sofa  |
|----------------------|-------|-------|--------|--------|-------|------------|----------|---------|----------|-------|-------|-------|
| global precision (%) | 62.16 | 40.28 | 24.00  | 28.89  | 30.65 | 27.50      | 13.89    | 0.00    | 54.79    | 25.00 | 6.15  | 0     |
| global recall (%)    | 69.70 | 36.25 | 22.64  | 31.71  | 25.68 | 33.33      | 17.86    | 0.00    | 34.48    | 27.59 | 5.80  | 0     |
| local precision (%)  | 63.15 | 47.89 | 22.45  | 34.78  | 29.23 | 36.36      | 16.22    | 12.50   | 57.14    | 27.03 | 11.59 | 20.00 |
| local recall (%)     | 71.21 | 42.50 | 20.75  | 39.02  | 25.68 | 48.48      | 21.43    | 5.88    | 37.93    | 34.48 | 11.59 | 3.23  |

(b) living room

| object type          | painting | door  | cabinet | dining table | window | heater | chair | sofa  | coffee table | end table | tv stand |
|----------------------|----------|-------|---------|--------------|--------|--------|-------|-------|--------------|-----------|----------|
| global precision (%) | 43.75    | 30.25 | 15.00   | 39.29        | 16.00  | 0.00   | 22.39 | 44.09 | 37.84        | 0.00      | 6.25     |
| global recall (%)    | 44.21    | 27.69 | 9.38    | 30.56        | 8.00   | 0.00   | 11.90 | 39.05 | 33.33        | 0.00      | 4.35     |
| local precision (%)  | 59.49    | 45.36 | 22.73   | 38.71        | 30.77  | 20.00  | 21.05 | 59.49 | 39.39        | 20.00     | 22.22    |
| local recall (%)     | 49.47    | 33.85 | 15.63   | 33.33        | 16.00  | 16.67  | 9.52  | 44.76 | 30.95        | 5.88      | 8.70     |

#### Table 3: Semantic labeling accuracy (a) bedroom

| object type | background | bed   | desk  | window | mirror | door  | nightstand | wardrobe | cabinet | painting | tv    | chair | sofa  |
|-------------|------------|-------|-------|--------|--------|-------|------------|----------|---------|----------|-------|-------|-------|
| global (%)  | 86.90      | 78.58 | 29.55 | 35.58  | 38.15  | 19.40 | 39.66      | 27.44    | 0.00    | 38.70    | 34.81 | 9.61  | 11.10 |
| local (%)   | 87.13      | 80.76 | 33.10 | 22.78  | 42.90  | 25.47 | 55.67      | 25.31    | 5.46    | 41.58    | 32.88 | 17.20 | 7.74  |

(b) living room

| object type | background | painting | door  | cabinet | dining table | window | heater | chair | sofa  | coffee table | end table | tv stand |
|-------------|------------|----------|-------|---------|--------------|--------|--------|-------|-------|--------------|-----------|----------|
| global (%)  | 91.98      | 44.66    | 41.07 | 7.87    | 24.24        | 12.59  | 0.00   | 15.46 | 47.05 | 42.33        | 3.87      | 1.21     |
| local (%)   | 93.50      | 47.50    | 36.75 | 16.27   | 21.80        | 12.37  | 11.19  | 14.95 | 49.47 | 42.78        | 3.99      | 7.66     |