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Vojtěch Šalanský1

http://cmp.felk.cvut.cz/~salanvoj

Karel Zimmermann1

http://cmp.felk.cvut.cz/~zimmerk

Tomáš Svoboda12

http://cmp.felk.cvut.cz/~svoboda

1 Center for Machine Perception,
Department of Cybernetics,
Faculty of Electrical Engineering,
Czech Technical University in Prague

2 Czech Institute of Informatics, Robotics and Cybernetics,
Czech Technical University in Prague

Abstract

We consider the problem of pan-tilt sensor control for active segmentation
of incomplete multi-modal data. Since demanding optimal control does
not allow for online replanning, we rather employ the optimal planner of-
fline to provide guiding samples for learning a CNN-based control policy
in a guided Q-learning framework. The proposed policy initialization and
guided Q-learning avoids poor local optima and yields reasonable results
already from hundreds of roll-outs. The results suggest that the proposed
policy outperforms a baseline and is suitable for real-time control.

1 Introduction

Object detection in an unknown environment from sensory data captured
by a mobile robot is crucial for many applications including Search &
Rescue (SAR) missions. In a typical SAR scenario, a human operator
or a global planner provides a coarse exploration path along which the
measurements are to be collected, registered and processed. Since most
of the sensors have a limited field of view and the exploration time is
typically constrained, resulting coverage of the environment by the sen-
sors may be incomplete, which may decrease the performance of object
detection. When sensors are located on pan-tilt units, the dimensional-
ity of the exploration planning is huge and does not allow for real-time
replanning when new data arrive. We propose a novel reactive control
of body-mounted mobile sensors for accurate classification of data gath-
ered along a given exploration path. We call this problem simultaneous
exploration and segmentation with incomplete data (SES).

Convolutional Neural Networks (CNN) has recently been shown to be
powerful representation for both classification [1] and control [2], which
however require either (i) a large number of labeled training examples [1,
4], or (ii) a careful initialization [2, 3] to learn properly. We show that
in contrast to a general reinforcement learning task, the structure of SES
allows for efficient policy initialization and guided learning to avoid poor
local optima and to yield reasonable results already from hundreds of roll-
outs. The method is verified on the problem of victim segmentation on a
mobile SAR robot.

2 Approach

The sensory suite of our mobile robot consists of (i) the Point Grey Lady-
bug 3 panoramic camera providing RGB images, (ii) the SICK LMS-151
laser scanner on a rotating mount providing depth images D, and (iii) the
thermal camera IMAGER TIM 160 with a small field of view mounted on
a pan-tilt unit and providing thermal measurements T. Since temperature
is an important cue for detecting victims in SAR, an intelligent control of
the pan-tilt unit is needed for compensating the limited sensor coverage
and maintain accurate detection.

We design a (re)active victim segmentation algorithm in which CNNs
simultaneously segment victims in incomplete RGBDT 3-D data and con-
trol pan of the thermal camera to minimize segmentation error.

Let us assume that the robot follows a known short-horizon path into
an unknown environment. Along the path, the temperature can be mea-
sured at some parts of the environment, namely at some voxels. Our in-
stance of the SES problem is defined as the classification of all voxels
visible from the panoramic sensor and simultaneous control of the ther-
mal camera which yields low classification error.

In the following, the problem is defined more formally. Let us de-
note V(i1, . . . , iK) the set of the voxels visible by the thermal camera from

viewpoints i1, . . . , iK captured at K positions along the path (i.e., finite
horizon is assumed). We also define ε(v) to be the expected classifica-
tion error when voxel v is classified based on RGBD data only and εT(v)
to be the expected classification error when voxel v is classified based on
RGBDT data. We assume that the motion dynamics of the thermal camera
is constrained and that viewpoint ik at time k is given as ik = f (ik−1,uk),
where f is the motion model and uk is a control action at time k. We
approximate the active segmentation task as the solution to the following
problem:

argmin
u1,...,uK

[
∑

v∈V(i1,...,iK)
εT(v)+ ∑

v/∈V(i1,...,iK)
ε(v)

]
s.t. ik = f (ik−1,uk) ∀k∈{1,...,K}, i0 = const.,

where i0 is an initial viewpoint. This problem is rewritten in the more
suitable way as follows:

argmin
u1,...,uK

[
− ∑

v∈V
ε(v)+ ∑

v∈V(i1,...,iK)
εT(v)+ ∑

v/∈V(i1,...,iK)
ε(v)

]
=

s.t. ik = f (ik−1,uk) ∀k∈{1,...,K}, i0 = const.,

= argmin
u1,...,uK

∑
v∈V(i1,...,iK)

[
εT(v)− ε(v)

]
=

s.t. ik = f (ik−1,uk) ∀k∈{1,...,K}, i0 = const.,

= argmax
u1,...,uK

∑
v∈V(i1,...,iK)

∆ε(v),

s.t. ik = f (ik−1,uk) ∀k∈{1,...,K}, i0 = const.,

where ∆ε(v) = ε(v)− εT(v) denotes reduction of the classification error
of voxel v when the temperature is known at this particular voxel.

If (i) the visibility of all voxels in all viewpoints along the robot path
is available in advance (ii) control signals are discrete and (iii) ∆ε(v) is
known for all voxels; then the optimal control corresponds to the weighted
maximum coverage problem with limited budget and motion constraints.
Such formulation is an instance of the Mixed Integer Linear Program
(MILP). However since an unknown environment is typically explored,
neither the map nor ∆ε(v) is known.

It is possible to approximate the map from the depth measurements
available so far and assume a uniform reduction in classification error.
However, computing the visibility for tens of thousands voxels and solv-
ing the MILP with tens of thousands constraints is extremely demanding,
which makes real-time replanning, whenever a new measurement is avail-
able, technically intractable. Consequently, we focus rather on the reac-
tive control, where a policy directly maps available RGBDTmeasurements
on the motion control uk+1. In particular, we follow the recent success of
Q-learning with deep CNNs and train a CNN which assigns Q-values rep-
resenting expected classification error, relative to the one obtained under
full visibility and optimal voxel coverage. The policy then chooses the
control u∗k+1 which maximizes the Q-value.

2.1 Policy initialization

Since the raw sensory measurements are high-dimensional, learning of a
deep Q-value network CNN:RGBD→Q from randomly initialized weights
would require a large number of training examples. To avoid such a de-
manding training procedure, we suggest to divide CNN:RGBD→Q into
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Figure 1: Deep CNN control policy overview. The policy is composed
of two subnetworks, CNN:RGBD→G and CNN:DG→Q, with an intercon-
necting subsampling layer in the middle.

two sub-networks: (i) CNN:RGBD→G which predicts a gain G (i.e., the
proposed approximation of ∆ε) from RGBD-data and (ii) CNN:DG→Q
which predicts the Q-values Q from the depth D and the gain G. These
two networks are first trained independently and then concatenated into
CNN:RGBD→Q. The overview of the Q-value network is shown in Fig. 1.

There are many ways how to approximate the decrease in classifica-
tion error ∆ε: for example when Gaussian Processes or decision trees are
used instead of CNNs, the expected classification errors ε,εT can be ob-
tained directly from the covariance of the posterior class probability. For
CNN, we can approximate ∆ε as a signed difference of responses of the
previously learned networks, y · (CNN:RGBDT→V−CNN:RGBD→V),
where y∈{−1,1} is the ground-truth label, namely,−1 for background, 1
for victim. Such an approximation, however, suffers from two drawbacks:
(i) it requires manually annotated segmentation dataset of RGBDTi with
ground-truth labels yi, (ii) CNN:RGBD→V already provides presumably
the best estimate of y given the model class constraints, and we cannot
thus hope to improve it further.

Consequently, we decided to simplify the approximation further and
use the absolute difference of responses of the segmentation networks,
G= |CNN:RGBDT→V−CNN:RGBD→V|, which measures the influence
of T-measurements on the segmentation output. This approximation is
reasonable only when T-measurement is assumed to improve the classi-
fication in most of the cases. On the other hand, it allows creating gain-
annotated data set of (RGBDi,Gi) pairs from arbitrary RGBDT data without
manual annotation for learning CNN:RGBD→G, as described in the next
section.

2.2 Multimodal image-based segmentation

Three different image-based models were learned, depending on the sen-
sory modalities used and given task: CNN:RGBD→V, CNN:RGBDT→V,
and CNN:RGBD→G. For RGB, all the models reuse the 16-layer VGG
net as adapted and fine-tuned by [3], namely the FCN-32s variant, and
combine it with additional models for depth and thermal modalities in
a late-fusion scheme. Since annotated depth and thermal data are much
scarcer, and no suitable trained models are available for these modalities,
we employ smaller models with four convolution layers.

We compose the multimodal models by summing up the outputs of
the (last) deconvolution layers, directly before the final softmax layer. All
models were learned using a momentum-accelerated stochastic gradient
descent on a semi-synthetic image data set of humans in various poses
with known ground-truth segmentation. The segmentation models used
the multinomial logistic loss for training, while the regression model used
the Euclidean loss. The CNN:RGBD→G model was fine-tuned from the
CNN:RGBD→V model after removing the softmax layer.

The pixel-wise predictions are accumulated into the corresponding
voxels using the depth measurements D, taking occlusions into account.

2.3 Guided Q-learning

The second sub-network CNN:DG→Q is trained by the proposed guided
Q-learning method. The algorithm successively collects training transi-
tions from available maps and trains Q-value regression network Qw(x,u)
with weights w, which assigns expected loss in the long-term sum of gains
due to control actions u taken in states x. The state vector xk consists of
(i) down-sampled half-panoramic depth and gain data, D and G, respec-
tively, observed at the current position, (ii) current viewpoint ik, and (iii)

the remaining length of the robot’s path k′ = K−k. The gain of the pixels
for which the thermal measurement is available is set to zero; otherwise,
it is provided by the CNN:RGBD→G network.

The guided Q-learning first estimates the optimal control of the ther-
mal camera u∗1, . . . ,u

∗
K and the corresponding optimal sum of gains c∗ by

solving the MILP task. Then it evaluates the sum of gains c achievable
for all possible control actions u ∈ U by successively fixing u∗1 = u and
solving the corresponding MILP instances from the following state. For
each possible u ∈ U we compute the relative long-term sum of gains as
Q = c/c∗, and store all such (xk,u,Q) tuples. Eventually, either the opti-
mal control u∗k or Q-value-driven control argmaxu∈U Q(xk,u) is applied,
and the process continues from the following state. If a sufficient number
of transitions is collected, we perform the gradient descent on weights w
of the regression network Qw(x,u) until the testing error stops decreasing.

In contrast to the standard Q-learning, the guided Q-value network is
not forced to predict the absolute sum of gains, which is often loosely con-
nected with the features observed in the current state. Guided Q-learning
rather predicts the expected impact on the optimality. Another advantage
stems from guiding the exploration of the state-action space close to the
optimal trajectories. In all experiments, the guiding probability linearly
decreases from 1 to 0.

3 Experimental results

First, we evaluated the guided Q-value policy (GQ-policy) from Sec.
2.3 on 64 randomly generated maze-like maps in terms of the gain accu-
mulated along the path. It was compared to a (i) reactive control simi-
lar to [5], here denoted by greedy, which at each position chooses the
viewpoint maximizing the current gain, (ii) Q-value policy (Q-policy)
trained by Q-learning similar to similar to [4] and (iii) the optimal
control from solving MILP. The gain achieved by the optimal control
creates a theoretical upper bound and is used to normalize the results.
The proposed GQ-policy achieved 0.85 of the optimum on average
and thus outperformed the greedy policy, which reached to 0.66, and
Q-policy, which reached to 0.72, by a large margin. We conclude that
the proposed GQ-policy policy outperformed the greedy one by a
factor of 1.28 and Q-policy one by a factor of 1.18.

Second, we evaluated GQ-policy on 14 indoor data sets from the
mobile SAR robot, and compared it to the greedy policy, which served
as the baseline in these experiments because the theoretical upper bound
was not known. Here, the proposed GQ-policy outperformed the greedy
one by a factor of 1.09 or 1.18, respectively, depending on whether the
CNN:DG→Q subnet used the subsampled depth D as a separate feature or
not.

While the performance of the proposed method in terms of the ac-
cumulated gain shows its suitability for real-time reactive control, a thor-
ough evaluation regarding the classification performance itself is needed
and remains as future work. Our current implementation, however, does
not achieve real-time performance due to limited computational power on
board; the CNN prediction, which is the most expensive part, takes 0.27 s
on GeForce GTX TITAN X (off-board). The real experiments were con-
ducted in a stop-and-go manner, which allowed to create a fair testbed for
all methods.
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