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Abstract

In a given scene, humans can easily predict a set of immediate future
events that might happen. However, pixel-level anticipation in computer
vision is difficult because machine learning struggles with the ambiguity
of predicting the future. In this paper, we focus on predicting the dense
trajectory of pixels in a scene — what will move in the scene, where it will
travel, and how it will deform over the course of one second. We propose
a conditional variational autoencoder as a solution to this problem. In
this framework, direct inference from the image shapes the distribution
of possible trajectories while latent variables encode information that is
not available in the image. We show that our method predicts events in
a variety of scenes and can produce multiple different predictions for an
ambiguous future. We also find that our method learns a representation
that is applicable to semantic vision tasks. Our algorithm is trained on
thousands of diverse, realistic videos and requires absolutely no human
labeling—relying only on labels produced by pixel tracking.

1 Introduction

Visual prediction is one of the most fundamental and difficult tasks in
computer vision. For example, consider the woman in the gym in Fig-
ure 1. We as humans, given the context of the scene and her sitting pose,
know that she is probably performing squat exercises. However, going
beyond the action label and predicting the future leads to multiple, richer
possibilities. The woman might be on her way up and will continue to
go up, or she might be on the way down and continue to descend further.
Those motion trajectories might not be exactly vertical, as the woman
might lean or move her arms back as she ascends. While there are multi-
ple possibilities, the space of possible futures is significantly smaller than
the space of all possible visual motions. For example, we know she is
not going to walk forward, she is not going to perform an incoherent ac-
tion such as a head-bob, and her torso will likely remain in one piece. In
this paper, we propose to develop a generative framework which, given a
static input image, outputs the space of possible future actions. The key
here is that our model characterizes the whole distribution of future states
and can be used to sample multiple possible future events.

Even if we acknowledge that our algorithm must produce a distribu-
tion over many possible predictions, it remains unclear what is the output
space of futures the algorithm should be capable of predicting. An ideal
algorithm would predict everything that might be relevant to a human or
robot interacting with the scene, but this is far too complicated to be fea-
sible with current methods. A more tractable approach is to predict dense
trajectories [12], which are simpler than pixels but still capture most of
a video’s content. While this representation is intuitive, the output space
is high dimensional and hard to parametrize, an issue which forced [12]
to use a Nearest Neighbor algorithm and transfer raw trajectories. Unsur-
prisingly, the algorithm is computationally expensive and fails on testing
images which do not have globally similar training images. Others have
been successful in predicting the optical flow to the immediate next frame
frame [6, 11]. However, this is very short term prediction. Other recent
works have proposed predicting pixels [7, 9] or the high dimensional fc7
features [10] themselves. [10] depends on semantics, and direct pixel pre-
diction suffers from a number of drawbacks. Notably, the output space
is high dimensional and it is difficult to encode constraints on the out-
put space, e.g., pixels can change colors every frame. There is also an
averaging effect of multiple possible predictions which leads to blurry
predictions.

In this paper, we propose to address these challenges. We propose
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Trajectories in Space-Time
Figure 1: Consider this picture of a woman in the gym — she could move
up or down. Our framework is able to predict multiple correct one-second
motion trajectories given the scene. The directions of the trajectories at
each point in time are color-coded according to the square from [1] on
the right. The diagram shows the complexity of the predicted motions in
space time.

to revisit the idea of predicting dense trajectories at each and every pixel
using a feed-forward Convolutional Network. Using dense trajectories re-
stricts the output space dramatically which allows our algorithm to learn
robust models for visual prediction with the available data. However, the
dense trajectories are still high-dimensional, and the output still has mul-
tiple modes. In order to tackle these challenges, we propose to use varia-
tional autoencoders to learn a low-dimensional latent representation of the
output space conditioned on an input image. Specifically, given a single
frame as input, our conditional variational auto-encoder outputs a map-
ping from noise variables—sampled from a normal distribution N (0,1)—
to output trajectories at every pixel. Thus, we can naively sample values
of the latent variables and pass them through the mapping in order to
sample different predicted trajectories from the inferred conditional dis-
tribution. Unlike other applications of variational autoencoders that gen-
erate outputs a priori [4, 5], we focus on generating them given the image.
Conditioning on the image is a form of inference, restricting the possi-
ble motions based on object location and scene context. Sampling latent
variables during test time then allows us to explore the space of possible
actions in the given scene.

Our paper makes three contributions. First, we demonstrate that pre-
diction of dense pixel trajectories is a plausible approach to general, non-
semantic, self-supervised visual prediction. Second, we propose a condi-
tional variational auto-encoder as a solution to this problem, a model that
performs inference on an image by conditioning the distribution of possi-
ble movements on a scene. Third, we show that our model is capable of
learning representations for various recognition tasks with less data than
conventional approaches.

2 Approach

A simple regressor—even a deep network with millions of parameters—
will struggle with predicting one-second motion in a single image as there
may be many plausible outputs. Our architecture augments the simple
regression model by adding another input z to the regressor (shown in
Figure 2(a)), which can account for the ambiguity. At test time, z is ran-
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(a) Testing Architecture (b) Training Architecture
Figure 2: Overview of the architecture. During training, the inputs to the network include both the image and the ground truth trajectories. A
variational autoencoder encodes the joint image and trajectory space, while the decoder produces trajectories depending both on the image information
as well as output from the encoder. During test time, the only inputs to the decoder are the image and latent variables sampled from a normal
distribution.

dom Gaussian noise: passing an image as input and sampling from the
noise variable allows us to sample from the model’s posterior given the
image. That is, if there are multiple possible futures given an image, then
for each possible future, there will be a different set of z values which
map to that future. Furthermore, the likelihood of sampling each possi-
ble future will be proportional to the likelihood of sampling a z value that
maps to it. Note that we assume that the regressor—in our case, a deep
neural network—is capable of encoding dependencies between the out-
put trajectories. In practice, this means that if two pixels need to move
together even if the direction of motion is uncertain, then they can simply
be influenced by the same dimension of the z vector.

2.1 Training by “Autoencoding”

It is straightforward to sample from the posterior at test time, but it is
much less straightforward to train a model like this. The problem is
that given some ground-truth trajectory Y , we cannot directly measure
the probability of the trajectory given an image X under a given model;
this prevents us from performing gradient descent on this likelihood. It
is in theory possible to estimate this conditional likelihood by sampling
a large number of z values and constructing a Parzen window estimate
using the resulting trajectories, but this approach by itself is too costly to
be useful.

Variational Autoencoders [4, 5] make this approach tractable. The
key insight is that the vast majority of samples z contribute almost noth-
ing to the overall likelihood of Y . Hence, we should instead focus only on
those values of z that are likely to produce values close to Y . We do this
by adding another pathway Q, as shown in Figure 2(b), which is trained
to map the output Y to the values of z which are likely to produce them.
That is, Q is trained to “encode” Y into the latent z space such that the
values can be “decoded” back to the trajectories. The entire pipeline can
be trained end-to-end using reconstruction error. An immediate objection
one might raise is that this is essentially “cheating” at training time: the
model sees the values that it is trying to predict, and may just copy them
to the output. To prevent the model from simply copying, we force the
encoding to be lossy. The Q pathway does not produce a single z, but
instead, produces a distribution over z values, which we sample from be-
fore decoding the trajectories. We then directly penalize the information
content in this distribution, by penalizing the KL-divergence between the
distribution produced by Q and the trajectory-agnostic N (0,1) distribu-
tion. The model is thereby encouraged to extract as much information as
possible from the input image before relying on encoding the trajectories
themselves. Surprisingly, this formulation is a very close approximation
to maximizing the posterior likelihood P(Y |X) that we are interested in.
In fact, if our encoder pathway Q can estimate the exact distribution of z’s
that are likely to generate Y , then the approximation is exact.

3 Experimental results

We utilized the UCF101 dataset [8] to train our model. Testing data for
quantitative evaluation came from the testing portion of the THUMOS
2015 challenge dataset [3]. The UCF101 dataset is the training dataset
for the THUMOS challenge, and thus THUMOS is a relevant choice for
the testing set. We use two baselines for trajectory prediction. The first
is a direct regressor (i.e., no autoencoder) for trajectories using the same

layer architecture from the image data tower. The second baseline is the
optical flow prediction network from [11], which was trained on the same
dataset. We simply extrapolate the predicted motions of the network over
one second.

On two different metrics—log likelihood via Parzen window estima-
tion as well as minimum Euclidean distance—our method outperforms
both baselines. This is reasonable since the regressor is inherently uni-
modal: it is unable to predict distributions where there may be many
reasonable futures, Interestingly, extrapolating the predicted optical flow
from [11] does not seem to be effective, as motion may change direction
considerably even over the course of one second.

We also evaluate the representation learned by our network on the task
of object detection. We take layers from the image tower and fine-tune
them on the PASCAL 2012 training dataset. We find that from a relatively
small amount of data, our method outperforms other methods that were
trained on datasets with far larger diversity in scenes and types of objects.
While the improvement is small over all objects, we do have the highest
performance on humans over all unsupervised methods, even [2]. This is
expected as most of the moving objects in our training data comes from
humans.
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