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Abstract

We study the problem of synthesizing a number of likely future frames
from a single input image. In contrast to traditional methods, which have
tackled this problem in a deterministic or non-parametric way, we propose
a novel approach that models future frames in a probabilistic manner. Our
probabilistic model makes it possible for us to sample and synthesize
many possible future frames from a single input image. Future frame
synthesis is challenging, as it involves low- and high-level image and
motion understanding. We propose a novel network structure, namely
a Cross Convolutional Network, to aid in synthesizing future frames;
this network encodes image and motion information as feature maps and
convolutional kernels, respectively. In experiments, our model performs
well on aligned real-world videos. We also show that our model can be
applied to tasks such as visual analogy-making.

1 Introduction

From just a single snapshot, humans are often able to imagine how a scene
will visually change over time. For instance, due to the pose of the girl
in Figure 1, most would predict that her arms are stationary but her leg is
moving. However, the exact motion is often unpredictable due to intrinsic
ambiguity. Is the girl’s leg moving up or down? In this work, we study
the problem of visual dynamics: modeling the conditional distribution of
future frames given an observed image. We propose to tackle this problem
using a probabilistic, content-aware motion prediction model that learns
this distribution without using annotations. Sampling from this model
allows us to visualize the many possible ways that an input image is likely
to change over time.

Modeling the conditional distribution of future frames given only a
single image as input is a very challenging task for a number of reasons.
First, natural images come from a very high dimensional distribution that
is difficult to model. Modeling the conditional distribution of future frames
further increases the dimensionality of the problem. Not only do the
sampled, synthesized images need to look like real images, the motion
between the input and synthesized images should also be realistic. Second,
in order to properly predict motion distributions, the model must first
learn about image parts and the correlation of their respective motions in a
unsupervised fashion.

In this work, we propose a neural network structure, based on a varia-
tional autoencoder [2] and our newly proposed cross convolutional layer,
to tackle this problem. During training, the network observes a set of
consecutive image pairs in videos, and automatically infers the relation-
ship between images in each pair without any supervision. Then, during
testing, the network predicts the conditional distribution, P(J|I), of future
RGB images J (Figure 1b) given an RGB input image I that was not in
the training set (Figure 1a). Using this distribution, the network is able
to synthesize multiple different image samples corresponding to possible
future frames of the input image (Figure 1c). Our network contains a
number of key components that contribute to its success:

• We use conditional variational autoencoder to model the complex
conditional distribution of future frames [2]. This allows us to ap-
proximate a sample, J, from the distribution of future images by
using a trainable function J = f (I,z). The argument z is a sample
from a simple distribution, e.g. Gaussian, which introduces random-
ness into the sampling of J. This formulation makes the problem
of learning the distribution much more tractable than explicitly
modeling the distribution.

• Instead of finding an intrinsic representation of the image itself,
as most previous work has done [1, 4, 5], or modeling a motion

* indicates equal contributions

Figure 1: The precise motion corresponding to a snapshot image in time is
often ambiguous. For instance, is the girl’s leg in (a) moving up or down?
We propose a probabilistic, content-aware motion prediction model (b)
that learns the conditional distribution of future frames. Using this model
we are able to predict and synthesize various future frames (c) that are all
consistent with the observed input image (a).

field [6], our network finds an intrinsic representation of intensity
changes between two images, also known as the difference image
This representation is typically sparser and easier to model than
content in an original image.

• We model motion using a set of image-dependent convolution ker-
nels operating over an image pyramid. Unlike [1], our proposed
cross convolutional network allows us to jointly learn these kernels
with features maps from observed frames, and convolve them to
synthesize a probable future frame.

We test the proposed model on a dataset generated from real videos.
We show that, given an RGB input image, the algorithm can successfully
model a distribution of possible future frames, and generate different
samples that cover a variety of realistic motions. We also demonstrate that
our model can be easily applied to tasks such as visual analogy-making.

2 Formulation: Conditional Variational Autoencoder

We formulate this problem using a conditional variational autoencoder,
following [2, 3]. Consider the following generative process that sam-
ples a future frame from a θ parametrized model, conditioned on an
observed image I. First the algorithm samples the hidden variable z from
a prior distribution pz(z); in this work we assume pz(z) is a multivariate
Gaussian distribution where each dimension is i.i.d. with zero-mean and
unit-variance. Then, given a value of z, the algorithm samples the intensity
difference image v from the conditional distribution pθ (v|I,z). The final
image, J = I + v, is then returned as output.

Objective Function In the training stage, the algorithm attempts to maxi-
mize the log-likehood of the conditional marginal distribution ∑i log p(v(i)|I(i)).
Assuming I and z are independent, the marginal distribution is expanded
as ∑i log

∫
z p(v(i)|I(i),z)pz(z)dz. Directly maximizing this marginal distri-

bution is hard, thus we instead maximize its variational upper-bound, as
proposed by [2]. Each term in the marginal distribution is upper-bounded
by L(θ ,φ ,v(i)|I(i)) defined as

−DKL(qφ (z|v(i), I(i))||pz(z))+Eqφ (z|v(i),I(i))

[
log pθ (v

(i)|z, I(i))
]
, (1)

where DKL is the KL-divergence, and qφ (z|v(i), I(i)) is the variational dis-
tribution that approximates the posterior p(z|v(i), I(i)). For simplicity, we
refer to the conditional data distribution, pθ (v(i)|z, I(i)), as the generative
model, and the variational distribution, qφ (z|v(i), I(i)), as the recognition
model.

The first KL-divergence term in Eq. 1 has an analytical form. To make
the second term tractable, we approximate the variational distribution,
qφ (z|x(i), I(i)), by its empirical distribution as follows

−DKL(qφ (z|v(i), I(i))||pz(z))+
1
L

L

∑
l=1

[
log pθ (v

(i)|z(i,l), I(i))
]
, (2)
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Figure 2: Our network consists of five components: (a) a motion encoder,
(b) a kernel decoder, (c) an image encoder, (d) a cross convolution layer,
and (e) a motion decoder. Our image encoder takes images at four scales
as input, while for simplicity we only show two in the figure.
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Figure 3: Sampled novel future frames. For each ‘Frame 2’ we show the
RGB image along with an overlay of green and magenta versions of the 2
consecutive frames to illustrate motion.
where z(i,l) are samples from the variational distribution.

Distribution Reparametrization Now we need to define distributions
for the generative model, pθ (v(i)|z(i,l), I(i)), and for the recognition model,
qφ (z(i,l)|v(i), I(i)). Using the reparameterization trick [2], we approximate
both distributions as Gaussian, where the mean and the variance of the dis-
tributions are functions specified by a generative network and a recognition
network, respectively. Specifically, let us define∗:

pθ (v
(i)|z(i,l), I(i)) =N (v(i); fmean(z(i,l), I(i)),σ2I), (3)

qφ (z(i,l)|v(i), I(i)) =N (z(i,l);gmean(v(i), I(i)),gvar(v(i), I(i))), (4)

whereN ( · ;a,b) is a conditional data distribution with mean a and vari-
ance b. fmean is a function that predicts the mean of the variational distribu-
tion, defined by the generative network. gmean and gvar are functions that
predict the mean and variance of the variational distribution, respectively,
defined by the recognition network. In the next section, we will describe
the details of the network structure.

3 Layered Motion Representations and Cross
Convolutional Networks

Motion can often be decomposed in a layer-wise manner [7]. Intuitively,
different semantic segments in an image should have different distributions
over all possible motions; for example, a building is often static, but a river
flows.

To model the layered motion, we propose a novel cross convolutional
network (Figure 2). The network first decomposes an input image pyramid
into multiple feature maps through an image encoder (Figure 2(c)). It then
convolves these maps using different convolutional kernels (Figure 2(d)),
and uses the outputs to synthesize a difference image (Figure 2(e)). This
network structure naturally fits the layered motion representation, as each
feature map characterizes an image layer (note this is different from a
network layer) and the corresponding kernel characterizes the motion of
that layer. In other words, we model motions as convolutional kernels,
which are applied to image segments (feature maps) at multiple scales.

Unlike a traditional convolutional network, these kernels used in our
network should not be identical for all inputs, as different images typically
have different motions (kernels). We therefore propose a novel cross

∗Here the bold I denotes an identity matrix, whereas the normal-font I denotes the observed
image.
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Figure 4: Left: results on visual analogy-making. Right: comparison
with [5]. Mean squared pixel error (MSE) on test analogies is used as the
metric.

convolutional layer to tackle this problem. The cross convolutional layer
does not learn the weights of the kernels itself. Instead, it takes both kernel
weights and feature maps as input and computes convolution during a
forward pass; for back propagation, it also computes the gradients of both
convolutional kernels and feature maps.

At last, in order to find the intrinsic representation z of motion to be
sampled in the testing time, we include a motion encoder and a kernel
decoder. The motion encoder (Figure 2(a)) is a variational autoencoder
that learns the compact representation z of possible motions. The ker-
nel decoder (Figure 2(b)) is a network that decodes the compact motion
representation z into motion kernels.

In sum, the motion encoder forms the recognition functions gmean and
gvar, whereas the image encoder, the kernel decoder, the cross convolutional
layer, and the motion decoder form the generative function fmean. During
training, the image encoder takes a single frame I(i) as input, and the
motion encoder takes both I(i) and the difference image v(i) = J(i)− I(i)

as input, where J(i) is the next frame. The network aims to regress the
difference image using an l-2 loss. During testing, the image encoder still
sees a single image I; however, instead of using a motion encoder, we
directly sample motion vectors z( j) from the prior distribution pz(z).

4 Experiments

We first collect 20 workout videos from YouTube, each about 30 to 60
minutes long. We extract 56,838 pairs of frames for training and 6,243
pairs for testing. The training and testing pairs come from different video
sequences. Figure 3 shows that our framework works well in predicting
the movement of the legs and torso.

We further conduct behavior experiments on Amazon Mechanical
Turk to quantitatively evaluate the algorithm. We randomly select 200
images, sample possible next frames using our algorithm, and show them
to multiple human subjects as an animation side by side with the ground
truth animation. We then ask the subject to choose which animation is real
(not synthesized). An ideal algorithm should achieve a success rate of 50%
and our algorithm achieves 31.3%, demonstrating the effectiveness of the
proposed network.

Inspired by some recent work on visual analogy-making [5], we also
demonstrate that our framework can be easily applied to the same task,
even without supervision on analogies during training. Specifically, [5]
studied the problem of inferring the relationship between a pair of images
and synthesizing a new image by applying the inferred relationship to
a new input image. Our motion encoder, which aims to extract motion
information from two consecutive frames, can also be used to extract and
synthesize relationships between pairs of images, as shown in Figure 4.
Although our method requires no analogy supervision, it still performs
better than those introduced in [5], which uses visual analogy labels during
training.
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