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Abstract

Frame-to-frame stochasticity is a major challenge in video prediction.
The use of standard feedforward and recurrent networks for video pre-
diction leads to averaging of future states, which can in part be attributed
to the networks’ limited ability to model stochasticity. We propose the
use of conditional variational autoencoders (CVAE) for video prediction.
To model multi-modal densities in frame-to-frame transitions, we extend
the CVAE framework by modeling the latent variable with a mixture of
Gaussians in the generative network. We tested our proposed Gaussian
mixture CVAE (GM-CVAE) on a simple video-prediction task involving
a stochastically moving object. Our architecture demonstrates improved
performance, achieving noticeably lower rates of blurring/averaging com-
pared to a feedforward network and a Gaussian CVAE. We also describe
how the CVAE framework can be applied to improve existing determinis-
tic video prediction models.1

1 Introduction

Modeling videos is a challenging problem involving high-dimensional
data with complex dynamics. As a result, most video prediction studies
focus on video data where frame-to-frame transitions are strongly deter-
ministic [6]. Recent developments in deep learning approaches for video
prediction have sought to overcome this limitation. To address the is-
sue of blurry predictions, Mathieu et al. [5] proposed replacing the mean
squared error loss function with a custom loss function learned by a dis-
criminator with adversarial training. A separate line of study by Oh et
al. [6] tackled video prediction tasks where the next frame depends not
only on the history of previous frames, but also on the action taken by
an agent. However, these solutions ultimately rely on a deterministic net-
work for next-frame prediction. As such, their proposed frameworks do
not model the inherently stochastic frame-to-frame dynamics present in
many video prediction tasks.

The limitations of a deterministic network is apparent when Oh et al.
[6] applied their video prediction framework to the game of Ms. Pacman.
While the network was able to predict the movement of the agent, it could
not successfully handle the stochastically-moving ghosts, leading to the
“disappearing ghosts phenomenon” (see https://youtu.be/cy96rtUdBuE).
In cases where the video prediction task is inherently stochastic, it is nat-
ural to consider a probabilistic model of the next-frame distribution when
conditioned on previous frames. In other words, we wish to solve the task
of high-dimensional conditional density estimation.

2 Approach

We propose to perform conditional density estimation using a conditional
variational autoencoder framework [8]. We further extend the conditional
variational autoencoder model by introducing a Gaussian mixture distri-
bution to tackle the issue of multi-modality in video prediction. We pro-
vide preliminary results where the use of a stochastic network capable

1This work was completed and submitted during the first author’s internship at Adobe Re-
search.
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Figure 1: The directed graphical model associated with the conditional
variational autoencoder architecture. In 1(a), solid lines denote the gen-
erative model pθ (z | x)pθ (y | z,x). Dashed lines denote the variational
approximation qφ (z | x,y) to the intractable posterior pθ (z | x,y). The
variational φ and generative θ parameters are learned jointly. In 1(b), an
additional node is introduced to reflect the conditioning on the action.

of modeling multi-modality proves vital. Finally, we show that our pro-
posed probabilistic model can be combined with the action-conditional
model by Oh et al. [6], thus demonstrating a simple probabilistic exten-
sion to existing deterministic models. We intend to use this probabilistic
model to address the “missing ghosts phenomenon,” which remains an
open problem.

2.1 Frame prediction

Suppose x denotes the history of previous frames and y denotes the next
frame. If we introduce a latent variable z that controls the frame tran-
sition dynamics, then we wish to learn the weight θ that parameterizes
the distribution pθ (z,y | x) = pθ (z | x)pθ (y | x,z). This model, shown in
Figure 1(a), reflects our belief that, in a stochastic video prediction task
with Markovian dynamics, the next frame is a function of the previous
frame and injected noise. We further condition z on x so that our model
takes into consideration the possibility that the previous frame can influ-
ence the level of noise injection. In this setup, the stochastic variable z
explains away features of y that cannot be accounted for by x, and the
level to which z explains away the features of y is further modulated by x.

To learn the weights φ and θ that parameterize the inference and gen-
erative networks respectively, we minimize (with respect to φ ,θ ) the fol-
lowing loss function based on the variational lower bound

L= Eqφ (z|x,y)
[
lnqφ (z | x,y)− ln pθ (z | x)pθ (y | x,z)

]
. (1)

Following Kingma et al. [3], we optimize the objective function using
stochastic gradient variational Bayes. Once we have trained the network,
y can be sampled from pθ (y | x) using a two-step process,

z∼ pθ (z | x), y∼ pθ (y | x,z), (2)

and can be used for generating subsequent frames.

2.2 Action-conditional frame prediction

In action-conditional video prediction, the action of the agent influences
the next frame. We introduce this into the model (Figure 1(b)) by includ-
ing an action variable a, such that pθ (y,z | x,a) = pθ (z | x)pθ (y | x,a,z).

https://youtu.be/cy96rtUdBuE


As part of our design choice, we choose not to incorporate the current
action information a when sampling z in the generative network. This
reflects a dynamical system where randomness in y is not directly caused
by a, but is instead a by-product of a deterministic action interacting with
the inherent stochasticity of the system. We minimize the loss function

L= Eqφ (z|x,a,y)
[
lnqφ (z | x,a,y)− ln pθ (z | x)pθ (y | x,a,z)

]
, (3)

and learn a model that performs action-conditional next-frame generation.

2.3 Multi-modal densities

Standard VAEs are constrained by the use of factorized Gaussian distri-
butions in both the generative and recognition networks. This is prob-
lematic if the density estimation task involves strong multi-modality—an
issue ubiquitous in video prediction. For example, in video game pre-
diction, starting from the same frame may result in divergent next-frame
trajectories. Rather than making posterior inference approximation more
flexible [4, 7], we propose to incorporate multi-modality directly into our
generative network by making pθ (z | x) a Gaussian mixture density.

However, using Gaussian mixtures makes the regularization compo-
nent of the objective functions (1) and (3) intractable. In Equation (1) for
example, the KL term, Eqφ (z|x,y)

[
lnqφ (z | x,y)− ln pθ (z | x)

]
, no longer

has a closed-form solution if pθ (z | x) is a Gaussian mixture. While it
is possible to approximate the Kullback-Leibler divergence using Monte
Carlo sampling, this increases the variance of the gradient estimator. In-
stead, we follow Hershey et al. [1] and use a closed-form approximation
of the KL term. Supposing that f is a Gaussian distribution and g is a
mixture of k Gaussians, g = ∑

k
i=1 πigi, where g1:k are the individual com-

ponents with weights π1:k, then KL( f‖g) can be approximated with,

KL( f‖g)≈ log
1

∑i πi exp(−KL( f‖gi))
. (4)

This approximation reduces the variance of the estimated gradient. We
call this model the “Gaussian mixture conditional variational autoencoder”
(GM-CVAE).

3 Experiments

In this section, we present a toy stochastic video prediction task that
demonstrates the importance of using a stochastic network that handles
multi-modality. We also discuss how the CVAE framework can be in-
corporated with work by Oh et al. [6] to tackle the “missing ghosts phe-
nomenon.”

3.1 Stochastic sprite

The stochastic sprite dataset is a toy video prediction problem. As the
name implies, the environment consists of a sprite that moves stochasti-
cally (Figure 2). We use a two-layer multilayer perceptron (MLP) that
outputs y given x. We then incorporate the CVAE framework by includ-
ing a 1-dimensional latent variable z. The GM-CVAE framework uses
four component Gaussians in the mixture.

By observing the sampled trajectories from the trained networks (Fig-
ure 2), it is easy to see that the deterministic MLP is incapable of han-
dling the stochastically-moving sprite. The trained MLP is susceptible to
averaging over the possible future states, causing the appearance multi-
ple ghosts (albeit with lower signal strength). Incorporating the CVAE
framework noticeably reduces the undesired averaging behavior. Further-
more, the stochastic movement of the sprite is strongly multi-modal (for
instance, the sprite can choose to make a sharp left or right turn); this
multi-modality is better accounted for by the GM-CVAE, which explains
why the GM-CVAE model appears to achieve lower rates of future-state
averaging than CVAE.

3.2 Ms. Pacman

The stochastic sprite dataset shows the limitations of a deterministic net-
work and sheds light on the “disappearing ghost phenomenon” in Oh et al.
[6]. Because the ghosts in Ms. Pacman move stochastically, the determin-
istic network is not able to tell a priori how the ghosts will move. When

Figure 2: First row: A sample trajectory from our dataset consisting of a
sprite that pivots stochastically at select locations. Remaining rows: sam-
pled trajectories from a trained MLP, CVAE, and GM-CVAE respectively.
See https://youtu.be/5fe30qSxW5s.

paired with an L2 loss, the deterministic network chooses to average over
all possible ghost movements. When performing multi-step prediction,
the cascaded averaging causes the ghosts to decay into the background.

It is thus imperative to have a model that successfully models the
stochastic frame-to-frame dynamics of Ms. Pacman. Accurately model-
ing the high-dimensional frame dynamics of a game such as Ms. Pacman
remains an open problem. While previous works have explored the use of
VAEs for video prediction and control-based video prediction [2, 9], it is
not clear if these models can be easily scaled to model Ms. Pacman. To
this end, the architecture by Oh et al. [6] is impressive in that it is able to
perform accurate frame prediction in all cases except when stochasticity
is vital. We thus propose to follow Oh et al. closely and demonstrate how
the CVAE framework can be layered on top of their existing architecture,
as shown in Figure 3.
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Figure 3: The probabilistic action-conditional model in Figure 1(b) can
be implemented in a way that easily incorporates the trained network pro-
posed by Oh et al. [6]. Note that we define y = ŷd +∆.

We note that the original architecture already makes a deterministic
approximation ŷd of the next-frame y. A simple method of incorporating
the probabilistic framework (Figure 1(b)) is to auto-encode ∆ = y− ŷd
using the latent variable z. Using the trained network from Oh et al. [6],
the objective function (3) reduces to

L= Eqφ (z|∆,x)
[
lnqφ (z | ∆,x)− ln pθ (∆,z | x)

]
. (5)

Given the accuracy with which ŷd already approximates y, ∆ is only nec-
essary for introducing minor changes that corrects ŷd when stochasticity
is involved. In essence, the stochastic channel x→ z→ ∆ learns to model
the residual stochasticity that cannot be accounted for by ŷd .
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