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Abstract

Affordances are defined as action opportunities that an environment offers
to an agent: relations between visually perceived properties of an object,
the possible actions afforded, and the effects of such actions. This notion
can be generalized to the concept of tools: i.e. the visual appearance of
a tool suggests what actions it affords to do on an object. Inspired by
the amount of trials human babies need to learn these kinds of relations,
we have gathered a relatively big dataset using iCub humanoid robot. The
robot performs different actions using easy-to-rebuild tools on various ob-
jects selected from the YCB objects set and observes the results of the
actions. The dataset can facilitate research in the areas of sensorimotor
learning, active perception and cognitive developmental robotics.

1 Introduction

A central theory in ecological psychology is that performing actions is
essential in developing visual perception. One compelling evidence of
this claim comes from the famous experiments of Held and Hein [9] in the
60s in which they showed kitten that had been exposed to sufficient visual
stimuli become functionally blind if they were deprived of the ability to
initiate movement while being exposed to this stimuli during some early
periods of their visual development.

Actions are deeply entangled with visual perception. They can either
guide perception like active vision [2] and active perception [4] or help
the agent to pick up relevant visual features with respect to its motor ca-
pabilities to accomplish a goal. This latter notion is related to affordances
(see [10] for a review).

By exploiting the direct relation between visual appearances of objects
and the the object’s respond to being subject to actions from the motor
repertoire of an agent, researchers in the field of robotics have tried to
solve the problem of interaction with the environment without the need to
recognize the elements of it. One example of this approach is explained in
[14] where the researchers have provided a data set of images annotated
not by the object’s classes but by the way different parts of objects afford
useful functionalities to humans like openable or supportable.

Another major area of research where the concept of affordances has been
extensively used is table top object manipulation [13, 16]. These stud-
ies explore how objects behave when a robot executes different actions
on them with its body. For example in [6] a semantic web is developed
which maps the co-occurrences of different concepts acquired through
different sensory modalities (vision, tactile, auditory) while the the robot
is interacting with objects by performing different actions such as moving,
pushing etc.

More recently, similar concepts have been used by researchers to encom-
pass object-object relations and to extend the robot capabilities by using
tools [8, 15]. In [12], the robot tries to predict the effect of pushing action
on an object given the visual features of different tools in hand. In another
work [7], the robot attempts multiple actions with different tools on var-
ious objects and tries to learn the resulting motion of the object through
several trials.

Despite the ubiquity of the scenario and even though different researchers
are trying to solve different aspects of the problem, the absence of a data
set related to this table top object manipulation with tools slows down the
comparison of different techniques. Moreover, the advances of learning
representations directly from images (see [11] for an overview) suggests
that it is possible to directly infer the properties of interest from image
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Figure 2: Initial relative position of each tool with
respect to the object for different actions

Figure 1: iCub

main axis.

pixels given sufficient trials.

To address these issues, we are introducing a new data set which is col-
lected by the iCub humanoid while performing actions with different ob-
jects and tools. To the best knowledge of authors, this data set is unique
as it gathers some desirable features which are important to various tasks.
(1) It is collected by the robot itself and not a human demonstrator, thus
the sensorimotor experience of the robot is authentic. (2) The data set is
concerned with object-object relations related to tool use and as a result,
it can be adopted to different bodies of robots as long as the robot can
hold that tool. (3) By selecting accessible objects and easily fabricated
tools, different researchers can reproduce the results or extend the data to
include more trials, objects, etc.

2 Description of the data set

The data set contains information about the effect of performing different
actions on various objects while the robot is holding one of the tools in its
left hand. The tool is always held in the same way but the its perceived
end-effector changes in correspondence with different actions.

Actions: Regarding each action, the robot places the tool’s end-eftector
to predefined positions relative to the object and attempts the action. Four
action classes are considered to be performed and the end-effector moves
for 12 cm along one of the four relative directions (also refer to Fig. 1):

Push push the object against the x axis. Tool tip placed below the object.

Pull pull the object towards the x axis. Tool tip placed on top of the
object.

Push-Right push the object against the y axis. Tool tip placed on the left
side of the object.

Push-Left push the object towards the y axis. Tool tip placed on the right
side of the object.

Fig. 2 shows where the robot tries to place the tool tip with respect to
objects. This position is not always accurate due to the errors in measure-
ments of the robot’s joint angles. One thing to note is that because stick is
not a useful tool to draw objects towards the robot, it is placed close to the
object and the object essentially doesn’t move (unless a small movement
is triggered because of the errors in the initial placement of the tool on the
table).

Objects: In order to make it easier to reproduce the results of the
experiment, it was decided to select some objects from the Yale-CMU-
Berkeley (YCB) Object and Model set [S]. The selected objects are light
weight and cover a relatively vast variation of visual appearances. Such
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Figure 4: The result of pulling lemon
with rake from left and right eyes

Figure 3: Selected objects from
the YCB object set

Figure 5: Tools view from robot perspective. a) stick b) rake c) hook

variations result in different motions each object would experience when
being subject to different actions under different tools. Fig. 3 shows the
set of objects from the view point of the robot.

Tools: Tools were also selected with similar intentions as objects: to
be (1) light weight; (2) accessible and (3) visually different so as to offer
different affordances. They were built from lightweight PVC pipes and
can be more suitable or less for different action/object pairs. Fig. 5 shows
each tool from the robot’s view point.

Trial: During each trial, aforementioned objects are placed on a table
in various positions and orientations. The robot is holding one of the
previously introduced tools in hand and the transformation from tool tip
to the center of the palm is provided by the experimenter. Afterwards, the
robot calculates the desired initial end effector position with respect to the
object according to Fig. 2 and the initial image of the object from left and
right cameras together with the initial 3d position of the object are saved
in a buffer before any action is taken into place. following these initial
recordings, the robot attempts to put the tool tip in the correct position
and perform one of the four actions. When the action is completed and the
robot joints return to their predefined positions, the experimenter decides
whether the action was successful or not. In case of successful actions all
the data related to the initial and final view of the object together with its
3d displacement are saved to the disc. Otherwise the buffers are flushed
and the robot prepares for the next trial. A video of the robot doing the
trials is accessible in the address: https://youtu.be/pKa6GNeBfjk. Some
of the visual features related to objects and in particular, the ones used in
[8] are also provided in addition to the raw images of objects and tools.

Statistics: In total, there are 11 objects, 4 actions, 3 tools and at
least 10 repetition of each trial which sums up to ~1320 unique trials and
5280 unique images of resolution 320*200 (the top 40 rows of pixels are
cropped as they correspond to regions outside of the boundaries of the
table). Fig. 6 shows the scatter plots of objects displacement on the x and
y axis (according to Fig. 1) for each action and tool and in Fig. 4 the
images from the robot’s point of view of doing a pull action with the rake
on the lemon is depicted.

Applications: Despite the differences in data types, actions, etc. the
goals of this experiment are not far from the experiment introduced in [1]
and their proposed architecture can be modified and adapt to the presented
dataset. Moreover, the same experiments were used in [3] to learn the
affordance network part of their proposed probabilistic planer. This data
can also be used as an initial test to assess the aptitude of applying some
algorithms on robot generated data before some other task specific data
is gathered. It should also be noted that the iCub robot has a vibrant
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Figure 6: Object motion after applying the actions with different tools on
the xy plane

community and the accessibility of tools and objects used in this study
makes it possible for other researchers to augment/validate this dataset.
This data itself can be accessed via http://vislab.isr.ist.utl.pt/datasets/
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