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Abstract

The ability of the Generative Adversarial Networks (GANs) framework
to learn generative models mapping from simple latent distributions to
arbitrarily complex data distributions has been demonstrated empirically,
with compelling results showing generators learn to “linearize semantics”
in the latent space of such models. Intuitively, such latent spaces may
serve as useful feature representations for auxiliary problems where se-
mantics are relevant. However, in their existing form, GANs have no
means of learning the inverse mapping – projecting data back into the la-
tent space. We propose Bidirectional Generative Adversarial Networks
(BiGANs) as a means of learning this inverse mapping, and demonstrate
that the resulting learned feature representation is useful for auxiliary su-
pervised discrimination tasks, competitive with contemporary approaches
to unsupervised and self-supervised feature learning.

1 Introduction

Deep convolutional networks (convnets) have become a staple of the mod-
ern computer vision pipeline. After training these models on a mas-
sive database of image-label pairs like ImageNet [17], the network eas-
ily adapts to a variety of similar visual tasks, achieving impressive results
on image classification [5, 16, 20] or localization [9, 14] tasks. In other
perceptual domains such as natural language processing or speech recog-
nition, deep networks have proven highly effective as well [2, 11, 18].
However, all of these recent results rely on a supervisory signal from
large-scale databases of hand-labeled data, ignoring much of the useful
information present in the structure of the data itself.

Meanwhile, Generative Adversarial Networks (GANs) [10] have emerged
as a powerful framework for learning generative models of arbitrarily
complex data distributions. The GAN framework learns a generator map-
ping samples from an arbitrary latent distribution to data, as well as an
adversarial discriminator which tries to distinguish between real and gen-
erated samples as accurately as possible. The generator’s goal is to “fool”
the discriminator by producing samples which are as close to real data
as possible. GANs produce impressive results on databases of natural
images [3, 15]. Interpolations in the latent space of the generator pro-
duce smooth and plausible semantic variations [15]. Based on these intu-
itions from observation of qualitative results, it appears that the generator
learned by the GAN framework learns to “linearize the semantics” of the
data distribution in the latent space.

A natural question arises from this ostensible “semantic juice” flow-
ing through the weights of generators learned using the GAN framework:
can GANs be used for unsupervised learning of rich feature representa-
tions for arbitrary data distributions? An obvious issue with doing so is
that the generator maps latent samples to generated data, but the frame-
work does not include an inverse mapping from data to latent representa-
tion.

Hence, we propose a novel unsupervised feature learning framework,
Bidirectional Generative Adversarial Networks (BiGANs). The overall
model is depicted in Figure 1. In short, in addition to the generator G and
discriminator D from the standard GAN framework [10], we additionally
learn an encoder E which maps data x to latent representations z.

BiGANs are a robust and highly generic approach to unsupervised
feature learning, making no assumptions about the structure or type of
data to which they are applied, as our theoretical results will demon-
strate. Our empirical studies of their feature learning abilities will show
that despite their generality, BiGANs are competitive with contemporary
approaches to unsupervised and weakly supervised feature learning tailor-
made for a notoriously complex data distribution – natural images.
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Figure 1: The structure of a Bidirectional Generative Adversarial Network
(BiGAN).

Dumoulin et al. [6] independently proposed an identical model in their
concurrent work, exploring the case of a stochastic encoder E and the
ability of such models to learn in a semi-supervised setting.

2 Bidirectional Generative Adversarial Networks

In Bidirectional Generative Adversarial Networks (BiGANs) we not only
train a generator, but additionally train an encoder E : ΩX → ΩZ. The
encoder induces a distribution pE(z|x) = δ (z−E(x)) mapping data point
x into the latent feature space of the generative model. The discriminator
is also modified to take input from the latent space, predicting PD(Y |x,z),
where Y = 1 if x is real (sampled from the real data distribution pX), and
Y = 0 if x is generated (the output of G(z),z∼ pZ).

The BiGAN training objective is defined as a minimax objective

min
G,E

max
D

V (D,E,G) (1)

where

V (D,E,G) = Ex∼pX

[
logD(x,E(x))

]
+Ez∼pZ

[
log(1−D(G(z),z))

]
.
(2)

We optimize this minimax objective using the same alternating gradient
based optimization as Goodfellow et al. [10].

BiGANs share many of the theoretical properties of GANs [10], while
additionally guaranteeing that at the global optimum, both G and E are bi-
jective functions and are each other’s inverse. BiGANs are also closely
related to autoencoders with an `0 loss function. In particular, the en-
coder and generator objective given an optimal discriminator C(E,G) :=
maxD V (D,E,G) can be rewritten as an `0 autoencoder loss function

C(E,G) = Ex∼pX

[
1[E(x)∈Ω̂Z∧G(E(x))=x] log fEG(x,E(x))

]
+

Ez∼pZ

[
1[G(z)∈Ω̂X∧E(G(z))=z] log(1− fEG(G(z),z))

]
with log fEG ∈ (−∞,0) and log(1− fEG) ∈ (−∞,0) almost everywhere
on both PEX and PGZ.

Here the indicator function 1[G(E(x))=x] is equivalent to an autoen-
coder with `0 loss, while the objective further encourages the functions
E(x) and G(z) to produce valid outputs in the support of PZ and PX re-
spectively. Unlike regular autoencoders, the `0 loss function does not
make any assumptions about the structure or distribution of the data it-
self; in fact, all the structural properties of BiGAN are learned as part of
the discriminator.

3 Evaluation

We evaluate the feature learning capabilities of BiGANs by first training
them unsupervised, then transferring the encoder’s learned feature rep-
resentations for use in auxiliary supervised learning tasks. We evaluate
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Figure 2: Qualitative results for ImageNet BiGAN training, including
generator samples G(z), real data x, and corresponding reconstructions
G(E(x)).

FRCN [8] FCN [14]
Classification Detection Segmentation

(% mAP) (% mAP) (% mIU)
trained layers fc8 fc6-8 all all all

ImageNet [13] 77.0 78.8 78.3 56.8 48.0

Random (k-means) [12] 32.0 39.2 56.6 45.6 32.6
Agrawal et al. [1] 31.2 31.0 54.2 43.9 -
Wang & Gupta [19] 27.4 51.4 58.4 44.0 -
Doersch et al. [4] 44.7 55.1 65.3 51.1 -

Discriminator (D) 30.7 40.5 56.4 - -
Latent Regressor (LR) 36.9 47.9 57.1 - -
Joint LR 37.1 47.9 56.5 - -
Autoencoder (`2) 24.8 16.0 53.8 41.9 -

BiGAN (ours) 37.5 48.7 58.9 46.2 34.9

BiGAN, 112×112 E (ours) 40.7 52.3 60.1 - -

Table 1: Classification and detection results for the PASCAL VOC
2007 [7] test set, and segmentation results on the PASCAL VOC 2012 [7]
validation set, under the standard mean average precision (mAP) or mean
intersection over union (mIU) metrics for each task. Classification models
are trained with various portions of the AlexNet [13] model frozen. The
fc8, fc6-8, and all column headers signify which layers are “fine-tuned”
using the VOC classification supervision.

BiGANs on the high-resolution natural images of ImageNet [17]. GANs
trained on ImageNet cannot perfectly reconstruct the data, but often cap-
ture some interesting aspects.

In these experiments, each module D, G, and E is a deep convnet. The
BiGAN discriminator D(x,z) takes data x as its initial input, and at each
linear layer thereafter, the latent representation z is transformed using a
learned linear transformation to the hidden layer dimension and added to
the non-linearity input. In all experiments, the encoder E architecture fol-
lows AlexNet [13] through the fifth and last convolution layer (conv5). We
also experiment with an AlexNet-based discriminator D as a baseline fea-
ture learning approach. We set the latent distribution pZ = [U(−1,1)]200.

Baseline methods Besides the BiGAN framework presented above, we
considered alternative approaches to learning feature representations us-
ing different GAN variants. The discriminator D in a standard GAN takes
data samples x ∼ pX as input, making its learned intermediate represen-
tations natural candidates as feature representations for related tasks. We
also consider an alternative encoder training by minimizing a reconstruc-
tion loss L(z,E(G(z))), after or jointly during a regular GAN training,
called latent regressor or joint latent regressor respectively. We use a sig-
moid cross entropy loss L.

Qualitative results In Figure 2 we present sample generations G(z), as
well as real data samples x and their BiGAN reconstructions G(E(x)).
The reconstructions, while certainly imperfect, demonstrate empirically
that the BiGAN encoder E and generator G learn approximate inverse
mappings.

VOC classification, detection, and segmentation We evaluate the trans-
ferability of BiGAN representations to the PASCAL VOC [7] computer
vision benchmark tasks, including classification, object detection, and
semantic segmentation. We report results on each of these tasks in Ta-
ble 1, comparing BiGANs with contemporary approaches to unsuper-
vised [4, 12] and weakly supervised [1, 19] feature learning in the visual
domain, as well as the baselines discussed in Section 3. For best results,
we also evaluate a BiGAN in which the encoder takes inputs at higher
resolution 112×112.

Discussion Despite making no assumptions about the underlying struc-
ture of the data, the BiGAN unsupervised feature learning framework of-
fers a representation competitive with existing self-supervised and even
weakly supervised feature learning approaches for visual feature learn-
ing, while still being a purely generative model with the ability to sample
data x and predict latent representation z. Furthermore, BiGANs outper-
form the discriminator (D) and latent regressor (LR) baselines discussed
in Section 3, confirming our intuition that these approaches may not per-
form well in the regime of highly complex data distributions such as that
of natural images. We finally note that the results presented here consti-
tute only a preliminary exploration of the space of model architectures
possible under the BiGAN framework, and we expect results to improve
significantly with advancements in generative image models and discrim-
inative convolutional networks alike.
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