
Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions

Carolina Redondo-Cabrera

carolina.redondoc@edu.uah.es

Roberto J. López-Sastre

robertoj.lopez@uah.es

GRAM

Department of Signal Theory and Communications

University of Alcalá, Spain

Abstract

In this work, we evaluate different unsupervised feature learning approaches

using Convolutional Neural Networks (CNNs) and videos. Essentially,

we experiment with a CNN feature learning model based on the Con-

trastive Loss function. We propose a novel Siamese-tuple network archi-

tecture trained with a new loss function which benefits from the temporal

coherence present in videos as the unique form of free supervision. Tech-

nically, our approach learns a feature representation where the temporal

coherence in contiguous video frames is kept, while it encourages that the

distance between frames extracted from the same video is smaller than the

distance between frames of different videos. Experiments show the im-

pact of our solution on two different tasks: unsupervised action discovery

in videos, and action recognition in still images.

1 Introduction

What is a good visual representation? At the beginning of the century,

most computer vision research focused on this “what” and used hand-

crafted features as the underlying visual representation. However, the last

years have seen the resurgence of learning visual representations directly

from pixels themselves using CNNs [5]. These deep learning models de-

signed for object or action recognition have millions of parameters, ne-

cessitating enormous manually annotated datasets for training. Therefor,

a question still remains: Is a strong supervision necessary for learning a

good visual representation?

In this work we explore unsupervised feature learning models for

CNNs which simply use unlabeled video for training. We also propose

a Siamese-tuple network architecture with a new loss function. Our loss

benefits from the temporal coherence present in videos as the unique form

of free supervision. Technically, it enforces that in the learned feature rep-

resentation the temporal coherence of contiguous video frames is kept,

while the distance between frames of different videos is always greater

than the distance between frames of the same video. We validate our ap-

proach proposing a novel benchmark: the fully unsupervised discovery of

actions in videos. Essentially, given a set of unlabeled videos, the goal

is to separate the different classes. This idea is motivated by the work

of Tuytelaars et al. [8] who discover object classes from collections of

unlabeled images. We propose now to use the UCF101 video dataset [7]

to discover the different actions. Moreover, we also explore whether our

unsupervised feature learning solutions can even surpass a strongly super-

vised pipeline, with pre-training and fine-tuning, for the problem of action

recognition using the PASCAL VOC 2012 dataset [1].

2 Unsupervised Learning from Videos

Our goal is to train CNNs using unlabeled videos. However, since we do

not have labels, it is not clear what the loss function should be, and how

we should optimize it. But videos come with a free form of supervision:

temporal coherence. In other words, we all know that, generally, contigu-

ous video frames do not drastically change. In [9] the authors follow this

principle, and present the concept of slow feature analysis (SFA).

SFA encourages the following property: in a learned feature space,

temporally nearby frames should lie close to each other. For a learned

representation Ψ, and adjacent video frames Vt and Vt+1, one would like

Ψ(Vt) ≈ Ψ(Vt+1). Following [2], we go one step further and present a

contrastive version of the loss function, which can also exploit negative

(non-neighbor) pairs of frames. As it is shown in Equation 1, the con-

trastive loss L(Ψ(Vt),Ψ(Vt+1),Ψ(Vt+n)) penalizes the distance between

pairs when they are neighbors (Y = 1), and encourages the distance be-

tween them when they are not (Y = 0).

L(Ψ(Vt),Ψ(Vt+1),Ψ(Vt+n)) = ∑
t∈V

Y ·d(Ψ(Vt),Ψ(Vt+1))+

(1−Y ) ·max{0,δ −d(Ψ(Vt),Ψ(Vt+n))}.
(1)

Inspired by SFA [9] and the Contrastive Loss [2], we first propose

the following idea. A query frame and its adjacent video frame should

lie close in the feature space Ψ, while they lie far from each other when

considering our previous query frame and any other randomly extracted

from a different video. So, the Eq. 1 can be re-written as,

L1(Ψ(Vt),Ψ(Vt+1),Ψ(V
′

t
′ ) = ∑

t∈V

Y ·d(Ψ(Vt),Ψ(Vt+1))+

(1−Y ) ·max{0,δ −d(Ψ(Vt),Ψ(V
′

t
′ ))},

(2)

being V ′
t
′ any other frame randomly extracted from a different video. In

the feature space Ψ(·), we use the standard euclidean distance.

However, it is still possible to go one step further. We also propose

an unsupervised learning model which jointly exploits the “slowness” and

the image similarity present in video sequences, inspired by [3]. Techni-

cally, we enhance our loss function defined in Equation 2 as follows. The

key idea is that a query frame and its adjacent frame should lie close in the

feature space, while this query frame and a not neighboring frame, which

belongs to the same video, should share a more similar representation than

with a frame extracted from a different video.

Formally, given a set of N unlabeled videos S = {V1,V2, . . . ,VN}, for

each video Vi, one can define Vi,t as the query frame, Vi,t+1 as its neigh-

boring frame, and Vi,t+n with n 6= 1 as the not neighboring frame. We then

define V j,t
′ as a frame randomly extracted from a different video V j , which

has been randomly selected from S too. Technically, we want to enforce

that d(Ψ(Vi,t),Ψ(Vi,t+1))≈ 0 and d(Ψ(Vi,t),Ψ(Vi,t+n))< d(Ψ(Vi,t),Ψ(V j,t
′ )).

Therefore, we define our new loss as follows,

L2(Ψ(Vi,t),Ψ(V+
i,t+1),Ψ(Vi,t+n),Ψ(V j,t

′ )) = ∑
t∈S

d(Ψ(Vi,t),Ψ(Vi,t+1))+

max{0,d(Ψ(Vi,t),Ψ(Vi,t+n))−d(Ψ(Vi,t),Ψ(V j,t
′ ))+δ},

(3)

where δ represents the gap between two distances. For all experiments,

we set the leap between frames n = 20, δ = 1 for Siamese networks

trained with L1 and δ = 0.5 for Siamese networks trained with L2.

3 Experimental results

3.1 Experimental setup

We evaluate the unsupervised learning approaches for action discovery

(see Section 3.2) using the UCF101 dataset [7]. It consists of over 12.000

videos categorized into 101 human action classes. The dataset is divided

in three splits. For our experiments we use the split-1. Note that we train

our models without the class labels provided. For the problem of action

recognition in still images (see Section 3.3), we use the the PASCAL VOC

2012 dataset [1], following the experimental setup proposed in [3]. This

dataset offers 10 action categories. The images are cropped using the

action annotations provided. Only 50 images (10 classes x 5 images per

class) are used during the fine-tuning stage. We test on 20000 images

randomly extracted from the validation set.

For our experiments, we scale the video frames to a size of 227×227.

The base network of our Siamese architecture is based on the AlexNet

model [5] for the convolutional layers. Then we stack two fully connected

layers on the pool5 outputs, whose neuron numbers are 4096 and 1024 for

the model trained with L2, and 4096 and 4096 for the architecture trained

with L1. We apply mini-batch SGD in training, using the Caffe frame-

work. As the Siamese networks share the same parameters, we perform

the forward propagation for the whole batch by a single network and cal-

culate the loss based on the output feature. To train our Siamese and

Siamese-tuple networks, we set the batch size to 120 pairs and 40 tuples

of images, respectively. For both networks, the learning rate starts with

ε0 = 0.001.



Table 1: Comparison of different architectures on the UCF101 dataset.

Measured as CE (lower is better) and Purity (higher is better).

Methods CE Purity (%)

Baseline RANDOM 6.31 3.33

AlexNet with L1 fc6 3.89 25.15

AlexNet with L1 fc7 3.95 24.84

AlexNet with L2 fc6 3.55 28.40

AlexNet with L2 fc7 3.57 28.12

AlexNet trained on ImageNet fc6 2.68 41.51

AlexNet trained on ImageNet fc7 2.89 39.76

3.2 Evaluation on Unsupervised Action Discovery

We here introduce a novel problem: unsupervised action discovery in

videos. Essentially, given a set of unlabeled videos, the goal is to separate

the different classes. We here evaluate how the features learned following

our unsupervised approaches perform with a clustering algorithm. This

idea is motivated by the work of Tuytelaars et al. [8] who discover object

classes from collections of unlabeled images with partition methods too.

We start characterizing the video frames with the learned feature represen-

tation Ψ, and then we run the clustering algorithm (K-means) to finally

measure the quality of the clusters discovered. Like in [8], we use Purity

and Conditional Entropy (CE) as the evaluation metrics for the discovery

quality.

We compare the performance of the two models described in Section

2: Siamese network learned with loss L1 and loss L2. We also evaluate

the performance in the same task, when the features for the clusterings are

obtained using the fully supervised AlexNet model trained on ImageNet

[5]. For all the methods, we show the results obtained performing k-means

(with k = 101) over the features extracted from the fully connected layers

6 and 7 (fc6 and fc7). Results are summarized in Table 1. First, note that

randomly assigning images to clusters results in a CE of 6.31. This value

is close to the maximum log2(101) = 6.66, giving this fact an idea of the

difficulty of the proposed problem.

The best performing method is the fully supervised ImageNet model,

using features extracted from layer 6. Our architecture (AlexNet with

L2) works better than the Siamese network based on the Contrastive Loss

(AlexNet with L1). We achieve a CE of 3.55 working with features ex-

tracted from layer 6. In other words, by applying our unsupervised pro-

cedure, the remaining uncertainty on the true object category has been

reduced from 26.31 = 79.34 out of 101 for the random assignment, down

to 23.55 = 11.63 out of 101 for our Siamese network trained with L2. If

we now observe the Purity results, again, our proposal outperforms the

Siamese network trained with L1.

Considering the Purity of the fully supervised AlexNet model trained

with ImageNet as an upper bound for the performance, note that our un-

supervised solution obtains a normalized purity of 28.40
41.51 = 0.68. We show

qualitative results in Figure 1 for the actions discovered.

3.3 Unlabeled video as a prior for supervised action

recognition

As a final experiment, we follow the experiment detailed in [3] for action

recognition. We examine here how the proposed unsupervised feature

learning model competes with the popular supervised pre-training plus

fine-tuning paradigm. We believe that the unsupervised feature learning

approaches have an important advantage: they can leverage essentially

infinite unlabeled data without requiring expensive human labeling effort.

The question is: can they compete with the fully supervised models?

Table 2 summarizes the main results. For the first group of rows we

show the performance obtained by following the setup proposed in [3], i.e.

a CIFAR CNN architecture [4] initialized with the features learned fol-

lowing our unsupervised model on 1000 videos clips randomly extracted

from the HMDB51 dataset [6]. The second part of the table presents the

performance achieved by the AlexNet based architectures, but using the

UCF101 for the unsupervised learning of features.

First, one notices for this experiment that the network architecture

seems to have little influence on the performance, except for the fully

supervised pre-training models (CIFAR 20.22 vs. AlexNet 28.45). Note

that this fact might be due to the large number of images with which the

AlexNet model is trained on Imagenet.

Our Siamese network model outperforms the fully supervised CIFAR

c1
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CE = 0.07
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Purity = 0.98

CE = 0.17
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Purity = 0.96

CE = 0.27
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CE = 0.08
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Purity = 0.94
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Figure 1: Qualitative results for K-mean clustering on the UCF101

dataset. 6 random images for the top three clusters discovered, in terms

of purity. The first three rows correspond to the Siamese network trained

with L1, the second group of three rows belong to the Siamese network

trained with L2, and the third group correspond to the AlexNet trained on

ImageNet.

Table 2: Results on PASCAL VOC 2012 Action dataset.

HMDB51 → PASCAL VOC 2012 Accuracy (%)

Baseline RANDOM 9.6

CIFAR net Init Random 15.20

CIFAR net initialized with L2 18.75

CIFAR net presented in [3] 20.95

CIFAR net supervised pre-trained on CIFAR-100 20.22

UCF101 → PASCAL VOC 2012 Accuracy (%)

AlexNet Init Random 15.10

AlexNet initialized with L2 18.15

AlexNet supervised pre-trained on ImageNet 28.45

and AlexNet with random initialization! This means that our unsuper-

vised learning strategy can be effectively used for the initialization of the

networks. For the CIFAR network, our proposal even outperforms the

fully supervised pre-training model when ≈ 17.400 training images are

used (Our 18.75 vs. 17.351). Our approach also obtains competitive num-

bers with respect to the best unsupervised model presented by [3] (20.95)

and the supervised model pre-trained with all 50.000 images of CIFAR-

100 (20.22). Finally, if the AlexNet model is used, our performance is

far from the fully supervised approach (18.15 vs. 28.25). But the results

seem promising, indicating that our models are able to learn effective vi-

sual representations for the action recognition task in a fully unsupervised

manner.
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