Computer Vision: Problem set 1 (Part 2)

Donghyuk Shin
September 22, 2009

2 Programming problem: content-aware image resizing

5. Content-aware image resizing results on a number of images are given in Figures 2 through
8. We first examine how vertical and horizontal seam carving alters an image. We reduce the
width, height and both using seam carving and compare it to simple resizing. The original
image we use in this example is shown in Figure 1.

Figure 1: groceries. jpg original image (375 x 500).



Figure 2 displays each case of horizontal (Figures 2(a), 2(d)) and vertical (Figures 2(b), 2(e))
seam removal. In horizontal removal we observe that pixels from the white shelves have low
energies. This will create a minimal seam path that passes through the shelves and seam
carving will start to remove these pixels. Thus, the straight lines of the shelves shown in
Figure 2(d) are turned into wobbly lines as in Figure 2(a). In the vertical case, since the
middle aisle in the image has low energies, most of it has been taken out. As a result, the two
shelves on each side are brought closer together, creating a distorted image. When horizontal
and vertical seam removal are applied together (Figures 2(b), 2(e)), seam carving produced an
image with both effects. Here, we alternated between horizontal and vertical seam removal.

(d) Simple resizing (275 x 500) (e) Simple resizing (375 x300) (f) Simple resizing (275 x 300)

Figure 2: groceries. jpg with content-aware resizing.

We now examine cases where seam carving produces perceptually pleasing results. Figures
3 and 4 are such examples. Figure 3 shows that we can preserve meaningful objects in its
original scale while redundant regions are removed. Seam carving first removes the backgroud
regions, the sky, the sea, and the sand between seals. As a result, the group of seals at the
bottom of the image are placed closely to each other. However, the algorithm is forced to
remove high energy pixels when the image size is reduced too much as in Figure 3(d).



(a) Original (375 x 500)

(b) Content-aware resizing (175 x 300) (c) Simple resizing (175 x 300)

(d) Content-aware resizing (100 x 225) (e) Simple resizing (100 x 225)

Figure 3: seals. jpg



In Figure 4, we can see that the main focus of the image (the stage) is well preserved. Removed
pixels are mainly unnoticeable pixels that blend with their surroundings. Note that even when
changing an image to a completely different ratio as in this case, we get a more perceptually
pleasing result than simple resizing.

(a) Original (375 x 500)

(b) Content-aware resizing (275 x 200) (c) Simple resizing (275 x 200)

Figure 4: concert. jpg



From Figure 5, we can anticipate that the connected shaded and shadow areas of the trees
will have low energy pixels by observing the original image (Figure 5(a)) . These are the
regions that seam carving removed as in Figure 5(b), making the shadows and trees thinner.
Branches are placed more closely together and some unnatural branches appear as a result.

(b) Content-aware resizing (275 x 300) (c) Simple resizing (275 x 300)

Figure 5: trees. jpg

To this point, it is obvious that content-aware image resizing with seam carving works well
when there are many regions of unnoticeable pixels that blend with their surroundings, such
as backgrounds. Moreover, important objects should have large differences in intesity values
in order to survive seam carving. However, in other cases seam carving produces bad results



compared to simple resizing. Such cases are when the backgrounds contain some pattern of
textures or important objects have similar intesity values within.

Figure 6 is an example when seam carving fails. The three main objects in the image, the
house and the two vehicles, are severely distorted compared to their original shape. Since
the whole object contains similar intesities within its body, the object itself gets carved out,
while the surroundings such as the trees are preserved.

(a) Original (375 x 500)

(b) Content-aware resizing (275 x 300) (c) Simple resizing (275 x 300)

Figure 6: house. jpg



Figure 7 is another example where seam carving does not work well. Notice the upper
background of the image that has some high energy texture. This makes it hard for the
algorithm to remove that region. While the content of the sign is unchanged, the person
standing next to the sign is clearly disformed. This is due to the shrit that is very similar to
the dirt road, guiding the minimal seam to go pass the person. Furthermore, the right leg of
the sign which blends with the dark surroundings of the image is carved out.

PR Y

o RRNRUEE e

F4lBoom

(a) Original (375 x 500)

e :
o2 HME

T

(b) Content-aware resizing (275 x 400) (c¢) Simple resizing (275 x 400)

Figure 7: sign. jpg



Here, we show an example of different seams-order. Figure 8(b) is the result of alternating
between horizontal and vertical seam removal, 8(c) is removing vertical seams first, and 8(d)
is removing horizontal seams first. One can see that there is no major difference between
these orders.

(a) Original (375 x 500) (b) Alternate (225 x 350)

(c) Vertical seams first (225 x 350) (d) Horizontal seams first (225 x 350)

Figure 8: shark. jpg (provided by www.dailymail.co.uk)



3 Extra credit

1. We allow a user to mark an object to be removed. Then apply seam carving to remove the
desired object in a content-aware manner. In order to remove a desired object with seam
carving, we first attempted to remove seams until all marked pixels are gone. However, this
resulted in unrealistic images. Normally, objects that are of interest have large energy values.
Thus, seams that include marked pixels are likely to be removed after unnoticeable low energy
seams and include high energy pixels from other parts of the image. This produces undesired
results of content-aware object removal. Even if we leave these low energy seams and only
remove seams that contain marked pixels, the resulting images were greatly distorted.

Therefore, we use a different approach where we force the minimal energy seam to include
marked pixels. This can be done by subtracting a large number from the energy values
of marked pixels. Thus, the algorithm will start to remove seams that are within the target
region. We calculate the smaller of the vertical or horizontal diameter in pixels of the selected
object and perform vertical or horizontal removals accordingly.

The Matlab function removeObject.m executes this procedure. The only argument to this
method is the input image represented by a m xn x 3 RGB color matrix. Right after executing
the function a pop-up of the original image will be displayed. The user can draw a desired
area containing the object to be removed on this image. Once the drawn area is closed the
function will execute rest of the procedure. We note that the removeObject.m function was
executed in Matlab v7.9.0 (R2009a) and does not run under Matlab v7.5.0 (2007b). Figure
9 shows some results of this content-aware object removal.



(a) Selected an area. (b) Object is removed.

(c) Selected an area. (d) Object is removed.

Figure 9: Content-aware object removal. (Bottom image provided by Steven Miller)

10



2. We apply a different energy function by using the ‘motion’ filter. This filter approximates the
linear motion of a camera by a fixed length of pixels with a given angle. The length and angle
are the parameters of this filter and it becomes a vector for horizontal and vertical motions.
We denote the two motion filters that were used as m; and mag, respectively, each shown in
Figure 10. Here, we use a length 3 motion filter with 45 (mq) and —45 (m2) degree angles.

(a) Motion filter m. (b) Motion filter ma.
Figure 10: Motion filters.
The new energy function e,,,; can be written as:
emot = m(I) + mo(I).

This should emphasize regions that have blurry effects representing some kind of motion
involved in the image. Thus, images that will benefit from focusing on these types of regions
will have better results than with the gradient magnitude e;.

11



Figure 11 of the groceries. jpg image displays this advantage where the width is reduced by
325 pixels. Clearly, Figure 11(b) better preserves the main aisle that is the focus of the image
than Figure 11(a). However, there are some artifacts at the bottom where the blurriness of
the image is weak.

(a) Using ey (375 x 175) (b) Using emor (375 x 175)

Figure 11: e, and e; applied to the groceries. jpg image (375 x 500).

Another example that e, works well is given in Figure 12 using racing. jpg (provided by
www.travelks.com). The size of this image is 364 x 243 and is reduced by 100 x 100 pixels. In
Figure 12(b) using e;, we can see that the crowd of people on top of the image is preserved,
since that part of the image has high values of gradient magnitude. Contrary, Figure 12(c)
shows that the racing cars and the grass area are preserved in the reduced image producing
a more desirable resized image.

12



(c) Using emor (264 x 143)

Figure 12: e, and e; applied to the racing. jpg image.

13



3. We use the HSV channel to avoid warping regions containing people’s face. Specifically, the
hue (H) channel of the HSV color space is used to perform this task. A simple filter is
created using a threshold value on the hue channel combined with the gradient magnitude.
By examining the facial region of the hue channel, pixels with a hue value that fall under
some threshold value are marked. Then some large number is added to the energy values of
these pixels. Thus, we are assigning high energy values to face regions, which in turn will
avoid seam carving of people’s face. This works in the opposite direction of object removal.

The threshold value is determined by the user. An image map displaying the positions of a
given image that fall under this threshold is provided to the user to see how well the selected
threshold distinguishes the face region from other parts of the image. An example of this map
is given in Figure 13. If the region marked is not identical to the facial region of the original
image, the user should select a different threshold value. The whole procedure is implemented
in the Matlab function faceImage.m which only requires the input RGB image matrix as an
argument.

(a) Original image (500 x 368) (b) Positions marked using threshold= 0.07

Figure 13: White pixels on the right image map are points with hue values under the threshold.

Result of an example image is given in Figure 14. It is easy to see that using hue information
with seam carving produces images that better preserves the face of a person. One drawback
is that other parts of the image that might have a hue value lower than the threshold will also
be untouched. Seam carving with the gradient magnitude filter alone treats the face region

14



same as other regions that are reletively less important. Thus, pixels within a face can get
low energy values and get included in the minimal seam. In this example, pixels around the
chin are removed as in Figure 14(b).

(b) Gradient seam carving (300 X 268) (c) Simple resizing (300 x 268)

Figure 14: obama. jpg

15



