Ordered responses for each image:
(a) the original input image, (b) your system’s resized image, (c) the result one would get if instead a simple resampling were used (via Matlab’s imresize), (d) the input and output image dimensions, (e) the sequence of enlargements and removals that were used, and (f) a qualitative explanation of what we’re seeing in the output

Groceries by The Consumerist
for x=1:10
 smaller = reduceWidth(reduceHeight(smaller,8),15);
end

The seams on the top and left side of the image have a sum of the energy function that is lower than the rest of the seams, most likely due to the fact that these areas are blurred more than the rest of the image. These blurred areas reduce the sum of the gradients across the sections. Therefore these seams have a lower overall energy and were removed from the image.
for x=1:90
 smaller = reduceWidth(reduceHeight(smaller,1),3);
end

The path between the trees has more change across it than compared to the trees on the left and right of the path. The seams often followed the trees along the left and right sides of the path. In the horizontal direction seams were removed mostly from the top region of the image. The seams along the top were removed because the branches had connected to one another which causes there to be low gradients along these seams.

Seals by allotrope
(500x375) to (260,255)
for x=1:120
 smaller = reduceWidth(reduceHeight(smaller,1),2);
end

The right side of the image was preserved after seam carving was performed on the original image. This means that the left side of the image had less overall energy along the seams. This is probably due to the less overall change on the left from sea to board-walk to beach, instead of sea to board-walk back to sea and then finally beach. The top of the image was also preferentially removed because the sky overall had very little change across it.
for i=1:30
 smaller = reduceHeight(reduceWidth(smaller,1),1);
 smaller = reduceHeight(reduceWidth(smaller,2),1);
 smaller = reduceWidth(smaller,1);
end

The sky in this image is the most continuous, therefore it was preferentially removed first. All of the buildings have high concentrations of gradient changes (along the windows) so the seam carving basically clumped all of the buildings closer together by removing seams of sky recursively.

Buck on the Run by Picture Taker 2
for i=1:8
 smaller = reduceHeight(reduceWidth(smaller,20),1);
end

The impala in this picture represents the largest change overall in the picture. That is why when making the image smaller with seam carving the impala is saved in the remaining image. Surrounding the animal, the grasses are pretty much similar, so those would be the first to go when reducing the size of the image. The sky also is relatively consistent, that is why there is less in the resulting image as well.

Niff the dog by Tal Bright
This is an example where seam carving produces artifacts in the resulting image. Because the background of the image, in this case a rug, is very textured there is a lot of change across the rug, resulting in it being preserved. The dog in this case has lower overall energy than the background so the seams with the least resistance travel through the dog, attempting to remove it from the picture. The algorithm only removed part of the dog so the resulting image looks very unnatural and weird.