
CS 378 Computer Vision Pset#1

CHI-MING YEH Unix Account: ychm

Part II :

 original input ‘seals.jpg’ 375x500

 my system’s resizeIm 750x500

First doing the enlargement and then doing the removals. However, in this picture, there

is no removals, only enlargement in height.

 matlab’s imresize 750x500

We can see the differences between my system and matlab’s imresize are in the two

people. In my system’s result, because people will have edges with high energy, they

won’t be picked to enlarge. Therefore, in the upper levee and the two people, they are

still almost the same in the original picture. However, in matlab’s imresize, we can find

out that the two people have been stretched and looks unrealistic.

 original input ‘groceries.jpg’ 375x500

My system’s resizeIm 375x1000

Matlab’s imresize 375x1000

When my system tries to enlarge in width, it finds the most important parts with high

edges. However, there are blurring areas in the middle of the original picture, which

means they have low energy. Compared to matlab’s imresize, my system’s resizeIm will

duplicate more pixels in the middle and cause distortion in the shelves.

original input ‘trees.jpg’ 375x500

My system’s resizeIm 250x250 matlab’s imresize 250x250

We can see that in my system’s picture, it preserves more branches of the trees because

they are edges with high energy. Thus, the trunks are thinner than the resized image of

matlab. It depends on which kind of information you want to protect!

 original input ‘waterfall.jpg’ 384x512

 my system’s 750x200 matlab’s 750x200

In this resizing, we first enlarge the height and then remove the width. We can see that

in my system’s resizing picture, it preserves most of the curves in the waterfall because

they have more edges with high energy. However, in matlab’s resizing picture, it just

squeezes the whole picture and makes the waterfall looks straight.

original input ‘longhorn’ 480x640

 my system’s resizeIm 200x300

 matlab’s imresize 200x300

This is a bad example for my system because it is plane and colorless inside the body of

the longhorn, it disappears after we remove the pixels. We preserves the leaves of the

trees because they have more edges. On the other hand, it still preserves most of the

shape of the longhorn in the matlab’s imresize.

original input ‘tower’ 480x640

My system’s resizeIm 600x300 matlab’s imresize 600x300

In my system’s resizing image, it tries to preserves the original pixels of the tower.

However, at some boundaries of the tower, they are mixed with some background pixels

in the columns of the image matrix. When we accumulate the vertical path energy, some

of the boundaries will have low energy and be cut by the program. This is the reason

why there are some holes in the tower. We can find out that, by using this algorithm, the

resized image will be sensitive to the shape if it is not very rectangular in their

boundaries and then be distorted by the program.

Furthermore, in my resizeIm function, it will first enlarge the image and then remove the

pixels. When doing enlargement, instead of just picking one optimal seam and

duplicating it, I find several seams at the same time. However, we should not pick too

many seams in one step; otherwise, it will be the same as matlab’s resizeim function. We

will check if we enlarge the image more than 50%, the process will be divided in several

steps. This will protect the high energy pixels from be distorted.

OPTIONAL :

1. An user use its cursor to click four points in the original image, we will cut he

rectangle area and show the new image compared with original one.

 original image 375x500

 cut out image 304x429

We first use the ‘ginput’ to get four points clicked by the user. Then, inside the rectangle,

we set all their energy to -100. Therefore, the selected area will be easily chosen by the

program as the seam to cut. By using a while loop to check if there are still pixels with

energy value as -100. If not, we know that we are done.

2. Using the HSV color space to protect human’s face.

original input ‘face.jpg’ 480z640

my system’s reduceWidth 480x540

Using hue enhancement to reduceWidth 480x540

We can see that in the original image, because of the colorless white t-shirt and the

colorful background, my systm’s reduceWidth function will cut out the face. By using the

command rgb2hsv, we can change to the HSV space. Also, we can find out that most of

the human skin color is around 0 < hue < 0.13xxx. Besides, most of the background will

be zero if it is plane and around 0.6 if it is colorful. Therefore, we just need to find the

pixels with hue that is less than 0.13 and bigger than zero. Then, add its energy function

to big enough as 1000. Finally, we will see that pixels with a skin color will be preserved

by the reduce Width function.

Image acknowledgements: Thanks to the following Flickr users for sharing their photos

under the Creative Commons license:

Seals.jpg is provided by allotrope

Trees.jpg is provided by russelljsmith

Groceries.jpg is provided by The Consumerist

