
Lu Xia

ID: Lxia1

I. Programming problem: image mosaics [100 points]

Apply your system to the provided pair of images, the output mosaic is as follow:

2. Additional example:

Warp image2 to image1:

Corresponding points

Image1

Image2

Mosaic (image1&image2)

Warp image3 to image2

Corresponding points

Image2 Image3

Mosaic (image2&image3)

Mosaic(image1&2&3)

3. Warp one image into a “frame” region in the second image.

Example 1

Image1 Image2

Result:

A room underwater.

Example 2

Image1 Image2

II. [OPTIONAL] Extra credit [up to 10 pts each, max 30 pts]

1. Replace the manual correspondence stage with automatic interest point detection

and local feature matching.

Interest points:

uttower1 Uttower2

Note: 50 interesting points are randomly selected and showed.

Corresponding points by feature matching:

We can see that the corresponding points created by the algorithm are quite accurate.

2. Implement RANSAC for robustly estimating the homography matrix from noisy

correspondences. Show with an example where it successfully gives good results even

when there are outlier (bad) correspondences given as input. Compare the robust

output to the original (non-RANSAC) implementation where all correspondences are

used.

Note: The result from the SIFT Feature matching is too good that there are no outliners in the

corresponding points created by the algorithm. In order to test the function of RANSAC, I

intentionally add 80% outliers to the corresponding points. So that the inlier rate is 20% (very

low).

The RANSAC algorithm converges as follow:

Minimal sample set dimension = 4

Squared noise threshold = 73.563766, (assuming Gaussian noise, for sigma = 1.000000)

Iteration = 1/ 95511315. Inliers = 4/ 115 (rank is r = -2732.03151473)

Iteration = 3/ 95511315. Inliers = 4/ 115 (rank is r = -2260.59250120)

Iteration = 5/ 95511315. Inliers = 4/ 115 (rank is r = -2183.69200254)

Iteration = 8/ 95511315. Inliers = 4/ 115 (rank is r = -2052.10956993)

Iteration = 9/ 95511315. Inliers = 4/ 115 (rank is r = -2043.30156386)

Iteration = 11/ 95511315. Inliers = 4/ 115 (rank is r = -1725.15093934)

Iteration = 20/ 2728888. Inliers = 7/ 115 (rank is r = -1548.02645323)

Iteration = 266/ 69965. Inliers = 15/ 115 (rank is r = -1540.21098857)

Iteration = 389/ 24635. Inliers = 19/ 115 (rank is r = -1507.86933672)

Iteration = 561/ 10780. Inliers = 23/ 115 (rank is r = -1470.07823104)

Iteration = 5336/ 10780. Inliers = 23/ 115 (rank is r = -1469.19593106)

Iteration = 10403/ 10780. Inliers = 23/ 115 (rank is r = -1464.77379393)

Iteration = 10674/ 10780. Inliers = 23/ 115 (rank is r = -1462.48859330)

Restimating the parameter vector... Done

Final number of inliers = 23/115

Converged in 10781 iterations (64.771879 seconds)

We can see that the algorithm correctly find the 23 inliers.

Mosaic generated from the inliers:

If all the correspondence are used:

inlier rate P=0.25

P=0.75

P=0.9

See the result is severely damaged by the outliers. The noise make the result totally

meaningless.

3. Rectify an image with some known planar surface (say, a square floor tile, or the

rectangular face of a building façade) and show the virtual fronto-parallel view.

Original image Parallel view.

Original image

Parallel view:

Codes:

%% image mosaics

% warp one image into another

clear all

clc

close all

%% read images

im1=imread('uttower1.JPG');%

im2=imread('uttower2.JPG');%uttower2.JPG

%% enlarge the image

[N,M,D]=size(im1);

largeIm1=uint8(zeros(3*N,3*M,D));

largeIm1(N+1:2*N,M+1:2*M,:)=im1;

[N,M,D]=size(im2);

largeIm2=uint8(zeros(3*N,3*M,D));

largeIm2(N+1:2*N,M+1:2*M,:)=im2;

% % manually select the corresponding points

num=4;

figure(1), imshow(largeIm1);hold on

% [X1,Y1] = ginput(num);

X1=[1126;1337;1502;1496]; %tower points

Y1=[1186;1299;990;1152]; %tower points

figure(2), imshow(largeIm2);hold on

% [X2,Y2] = ginput(num);

X2=[1589;1800;1951;1958]; %tower points

Y2=[1224;1334;1012;1180]; %tower points

% calcualte the transform matrix H

H=trasformMatrix(X1, X2, Y1, Y2);

%display the corresponding points

for k=1:length(X1)

 P=H*[X1(k);Y1(k);1];

