
Ryan Ebanks
CS 376
Problem Set #1

I.) Short Answer Problems
1.) The Associative property of convolusion states (f*g)*h = f*(g*h). This can be used to
more efficiently filter an image by applying convolusion to the two smaller matrices first,
and the using that result to apply to the larger matrix. This will reduce the number of
computations necessary.
2.) Result of dilation is [0 1 2 2 1 1 2 2]
3.)
4.) One could reduce the amount of fine edges detected by the setting high thresholds and
also one could use a large area filter to smooth the picture.
5.)
6.) For these methods to work I am assuming that the camera remains at a stationary above
the conveyor belt so it will always have the same scale. Also the objects on the conveyor
belt are of same type of object, will always be oriented the same way on the conveyor belt,
will always be at the same distance away from the edge of the conveyor belt, and will be
equally spaced on the belt. The conveyor belt itself will be a solid color that greatly
contrasts the color of the part. The first step would be to get a still image (a single frame)
of the video when the part is passing directly under the camera. With this image I would
apply a Guasian filter to smooth the edges. The we could run a canny edge detector and see
if matched the outline that we were expecting. If it did not we could alert a quality control
person to remove the part from the line.

II.) MATLAB CODE
function xgrad = xgradient(img)

img = im2double(img);
img_gray = rgb2gray(img);
h1 = fspecial('gaussian',5,5);
smooth = imfilter(img_gray, h1);
h2 = [-1,1];
xgrad = imfilter(smooth, h2);

function ygrad = ygradient(img)

img = im2double(img);
img_gray = rgb2gray(img);
h1 = fspecial('gaussian',5,5);
smooth = imfilter(img_gray, h1);
h2 = [-1;1];
ygrad = imfilter(smooth, h2);

function energy = calcEnergy(img)

xgrad = xgradient(img);
ygrad = ygradient(img);
energy = sqrt(xgrad.^2 + ygrad.^2);

function seams = vertEnergyMap(img)

en_mat = calcEnergy(img);
dim = size(en_mat);
for i=1:1:dim(1)

for j=1:1:dim(2)
if i == 1
 seams(i,j) = en_mat(i,j);

 elseif j - 1 < 1
 seams(i,j) = en_mat(i,j) + min(seams(i-1,j), seams(i-1, j+1));

 elseif j+1 > dim(2)
 seams(i,j) = en_mat(i,j) + min(seams(i-1,j), seams(i-1, j-1));

 else
 seams(i,j) = en_mat(i,j) + min(seams(i-1,j+1), min(seams(i-1,j), seams(i-1, j-1)));

 end
 end
end

function seams = horzEnergyMap(img)

en_mat = calcEnergy(img);
dim = size(en_mat);
for j=1:1:dim(2)

for i=1:1:dim(1)
if j == 1
 seams(i,j) = en_mat(i,j);

 elseif i - 1 < 1
 seams(i,j) = en_mat(i,j) + min(seams(i,j-1), seams(i+1, j-1));

 elseif i+1 > dim(1)
 seams(i,j) = en_mat(i,j) + min(seams(i,j-1), seams(i-1, j-1));

 else
 seams(i,j) = en_mat(i,j) + min(seams(i+1,j-1), min(seams(i,j-1), seams(i-1, j-1)));

 end
 end
end

function optimal = optVertSeam(img)

seams = vertEnergyMap(img);
dim = size(seams);
mina = 99999;
for c=1:1:dim(2)

if seams(dim(1),c) < mina
 col = c;

 mina = seams(dim(1), c);
 end
end
optimal = zeros(dim(1), 2);
optimal(dim(1), 2) = col;
optimal(dim(1), 1) = dim(1);

for r=dim(1)-1:-1:1
optimal(r,1) = r;
if col - 1 < 1
 if seams(r, col) < seams(r, col+1)

 optimal(r, 2) = col;
 else
 optimal(r, 2) = col+1;

 col = col+1;
 end

 elseif col + 1 > dim(2)
 if seams(r, col) < seams(r, col -1)
 optimal(r,2) = col;

 else
 optimal(r,2) = col -1;

 col = col - 1;
 end

 else
 if seams(r, col) < seams(r, col -1) && seams(r, col) < seams(r, col+1)
 optimal(r, 2) = col;

 elseif seams(r, col-1) < seams(r, col) && seams(r, col-1) < seams(r, col+1)
 optimal(r, 2) = col - 1;

 col = col - 1;
 else
 optimal(r, 2) = col+1;

 col = col +1;
 end
 end
 end

function optimal = optHorzSeam(img)

seams = horzEnergyMap(img);
dim = size(seams);
mina = 99999;
for r=1:1:dim(1)

if seams(r,dim(2)) < mina
 row = r;

 mina = seams(r, dim(2));
 end
end

optimal = zeros(2, dim(2));
optimal(1, dim(2)) = row;
optimal(2, dim(2)) = dim(2);

for c=dim(2)-1:-1:1
optimal(2,c) = c;
if row - 1 < 1
 if seams(row, c) < seams(row+1, c)

 optimal(1, c) = row;
 else
 optimal(1, c) = row+1;

 row = row+1;

 end
 elseif row + 1 > dim(1)

 if seams(row, c) < seams(row-1, c)
 optimal(1,c) = row;

 else
 optimal(1,c) = row -1;

 row = row - 1;
 end

 else
 if seams(row, c) < seams(row-1, c) && seams(row, c) < seams(row+1, c)
 optimal(1, c) = row;

 elseif seams(row-1, c) < seams(row, c) && seams(row-1, c) < seams(row+1, c)
 optimal(1, c) = row - 1;

 row = row - 1;
 else
 optimal(1, c) = row+1;

 row = row +1;
 end
 end
 end

function imgwseam = displaySeam(img, HorV)

if HorV == 'v'
 vseam = optVertSeam(img);
 imshow(img);
 hold on;
 plot(vseam(:,2),vseam(:,1))
elseif HorV == 'h'
 hseam = optHorzSeam(img);
 imshow(img);
 hold on;
 plot(hseam(2,:)' , hseam(1,:)')
else
 vseam = optVertSeam(img);
 hseam = optHorzSeam(img);
 imshow(img);
 hold on;
 plot(vseam(:,2),vseam(:,1));
 hold on;
 plot(hseam(2,:)' , hseam(1,:)')
end

function redu = reduceWidth(img, amount)
temp = img;
for seams_rm=1:1:amount

 rm = optVertSeam(temp);
 rm = rm(:,2);
 dim = size(temp);
 reduced = zeros(dim(1), (dim(2)-1), dim(3));

 ed = dim(2);
 for r=1:1:dim(1)

 if rm(r) < dim(2) && rm(r) > 1
 reduced(r,:,1) = [temp(r,1:(rm(r)-1),1) temp(r,(rm(r)+1):ed,1)];

 reduced(r,:,2) = [temp(r,1:(rm(r)-1),2) temp(r,(rm(r)+1):ed,2)];
 reduced(r,:,3) = [temp(r,1:(rm(r)-1),3) temp(r,(rm(r)+1):ed,3)];
 elseif rm(r) == 1
 reduced(r,:,1) = temp(r,2:ed,1);
 reduced(r,:,2) = temp(r,2:ed,2);
 reduced(r,:,3) = temp(r,2:ed,3);

 else
 reduced(r,:,1) = temp(r,1:(ed-1),1);

 reduced(r,:,2) = temp(r,1:(ed-1),2);
 reduced(r,:,3) = temp(r,1:(ed-1),3);
 end

 end
 temp = uint8(reduced);

end
redu = temp;

function redu = reduceWidth(img, amount)
temp = img;
for seams_rm=1:1:amount

 rm = optVertSeam(temp);
 rm = rm(:,2);
 dim = size(temp);
 reduced = zeros(dim(1), (dim(2)-1), dim(3));
 ed = dim(2);
 for r=1:1:dim(1)

 if rm(r) < dim(2) && rm(r) > 1
 reduced(r,:,1) = [temp(r,1:(rm(r)-1),1) temp(r,(rm(r)+1):ed,1)];

 reduced(r,:,2) = [temp(r,1:(rm(r)-1),2) temp(r,(rm(r)+1):ed,2)];
 reduced(r,:,3) = [temp(r,1:(rm(r)-1),3) temp(r,(rm(r)+1):ed,3)];
 elseif rm(r) == 1
 reduced(r,:,1) = temp(r,2:ed,1);
 reduced(r,:,2) = temp(r,2:ed,2);
 reduced(r,:,3) = temp(r,2:ed,3);

 else
 reduced(r,:,1) = temp(r,1:(ed-1),1);

 reduced(r,:,2) = temp(r,1:(ed-1),2);
 reduced(r,:,3) = temp(r,1:(ed-1),3);
 end

 end
 temp = uint8(reduced);

end
redu = temp;

RESULTS**************************

1.)

2.)

The energy map is going to high where ever there is a edge. When you look at the energy map you
can basically see the outline of the prague.jpg which is what we would expect. The Cumulative
Seams graph also shows what we expect. The values on the right side of the image are going to be
hight as the function sums to the right. Also there are low values in the area where the sky is
located in the photo because there are a small amount of edges there. You can also notice the values
increase around where the seams have to pass over the buildings and are extremely high where the
seams have to pass over the boat.
For the Vertical Cumulative seams, it is also as we expect. The values continue rise as you go
farther down the graph. The highest range is at the bottom right where the seams have to pass over

the boat. The rest of the graph has a pretty even vertical distribution of intensity as all vertical
seams pass throught the same three layers of sky, buildings, and water.

3.)

This picture displays the optimal vertical and horizontal seam for prague.jpg. If you follow the
vertical seam, from the top to the bottom, you will notice it tries to stay in blue area of the sky
where there are very little edges to cross. As it enters the building level of the photo, it follows
along the dark building that has consistent face with no window. And finally, as turns to be able to
travel through the water at place where there are not many ripples, again to avoid ass many edges as
possible. The Horizontal seam follows the path across the sky where it does not have to cross edges
which is the exact behavior we would expect.

4.)

function energy = altCalcEnergy(img)

xgrad = xgradient(img);
ygrad = ygradient(img);
energy = sqrt(xgrad.^2 + 25*ygrad.^2);

So here, I weight the y-gradient 25 times more than the x-gradient. As you would expect it returns
overall high energy per pixel, and you will notice that the mostly horizontal seams have a lot hight
energy than the mostly vertical seams. This would cause the the the seam select function to prefer
to cross the mostly vertical seams than the mostly horizontal.

5.)

The original photo is 453x604, and is a picture of me falling while wakeboarding. The pictures are
slightly off due to importing them from matlab. In the picture that as produced from seam carving
you can see that seams cut through the water where it was splashing up and creating 'white water'.

This is the same original as the above alterations but this time we reduced the height. As you can
see it removed the sky because the lack of distinct edges up there, but then also removed a portion
of the wake board since it is the same color as the hills. And again some of the non-'white water'
was removed.

This a picture from a vacation I took from when I went to China, size 454x604. When seam carved
the river in the middle almost gets completely cut out. The river contains almost no edges, so it was
the first thing to get removed.

This is an image of a self portrait by Van Goh, orginal size 1026x1127. I picked this picuter
because it basically has edges every where and wanted to see what the result would be. You can see
it avoid carving most of the face. This is probably because the most pronounced edges are on the
face to due to the red hair color and beard. The rest of the photo is a varying shade of blue os the
edges would be less pronounced.

