
Towards Transparent Systems: Semantic
Characterization of Failure Modes

Aayush Bansal1, Ali Farhadi2, and Devi Parikh3

1Carnegie Mellon University 2University of Washington 3Virginia Tech

1 Introduction
Today’s computer vision systems are not perfect. They fail frequently. Even
worse, they fail abruptly and seemingly inexplicably. We argue that making our
systems more transparent via an explicit human understandable characterization
of their failure modes is desirable. We propose characterizing the failure modes
of a vision system using semantic attributes. For example, a face recognition
system may say “If the test image is blurry, or the face is not frontal, or the
person to be recognized is a young white woman with heavy make up, I am likely
to fail.” This information can be used at training time by researchers to design
better features, models, or collect more focused training data. It can also be used
by a downstream machine or human user at test time to know when to ignore
the output of the system, in turn making it more reliable. To generate such a
“specification sheet”, we discriminatively cluster incorrectly classified images in
the semantic attribute space using L1-regularized weighted logistic regression.
We show that our specification sheets can predict oncoming failures for face and
animal species recognition better than several strong baselines. We also show
that lay people can easily follow our specification sheets.

2 Approach
While our approach can be applied to any vision system, we use image classifica-
tion as a case study in this paper. We are given a set of N images along with their
corresponding class labels {(xi, y

′
i)}, i ∈ {1, . . . , N}, y′ ∈ {1, . . . , C}, where C is

the number of classes. We are also given a pre-trained classification system H(x)
whose failures we wish to characterize. Given an image xi, the system predicts a
class label ŷ′i for the image i.e. ŷ′i = H(xi). We assign each image in our training
set to a binary label {(xi, yi)}, yi ∈ {0, 1}, where yi = 0 if ŷ′i = y′ i.e. images xi

is correctly classified by H, otherwise yi = 1. We annotate all images xi using
a vocabulary of M binary attributes {am},m ∈ {1, . . . ,M}. Each image is thus
represented with an M dimensional binary vector i.e. xi ∈ {−1, 1}M indicating
whether attribute am is present in the image or not. We wish to discover a spec-
ification sheet, which we represent as a set of sparse lists of attributes – each
list capturing a cluster of incorrectly classified or “mistake” images i.e. a failure
mode.

Discriminative Clustering: We discriminatively cluster the mistake images
in this ground truth attributes space. We initialize our clustering using k-means.
This gives each of the mistake images a cluster index ci ∈ {1, . . . ,K}. We denote
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all mistake images belonging to cluster k as {xk
i }. We train a discriminative

function hk(xi) for each of the clusters that separates {xk
i } from other “negative”

images.

L1-Regularized Logistic Regression: The discriminative function we train
for each cluster is an L1-regularized logistic regression. It is trained to separate
mistake images belonging to cluster k (yki = 1) from all not-mistake images
(yki = 0). yki is the label assigned to images for training the cluster-specific
discriminative function. Notice that here yki is not defined for images belonging
to other mistake clusters xl

i, l ∈ {1, . . . ,K}, l 6= k, as they do not participate
in training the discriminative function for cluster k. All discriminative functions
share the same negative set i.e. the not-mistake images {x0

i }.
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Fig. 1. The learnt sparse discriminative function for
each cluster can be directly converted to a compact
semantic description of the cluster.

Weighted Logistic Regres-
sion: In addition to iden-
tifying attributes that sepa-
rate mistake from not-mistake
images, we also wish to en-
sure that images belonging
to the same cluster share
many attributes in common
and more importantly, the at-
tributes selected to character-
ize the clusters are present in
most of the images assigned to
that cluster. This will help make the specification sheet accurate and precise. To
encourage this, rather than using a standard L1-regularized logistic regression
as described above, we use a weighted logistic regression. At each iteration, we
replace each binary attribute in the image representation with the proportion of
images in the cluster that share the same (binary) attribute value.

Hierarchical Clustering: In addition to the weighted discriminative clustering
described above, we also experiment with hierarchical clustering. Given a branch-
ing factor B, we initialize the clustering using k-means with B clusters. We run
the iterative discriminative clustering approach described above till convergence
using weighted L1-regularized logistic regression. We then further cluster each of
the B clusters into B clusters using the same iterative discriminative clustering,
and so on, till the tree reaches a predetermined depth D.

3 Experiments

Datasets: We experiment with two domains: face (celebrity) and animal species
recognition. For faces, 2400 images from 60 categories (40 images per category)
from the development set of the Public Figures Face Database (Pubfig) of Ku-
mar et al . [1] are used. For animals, 1887 images from 37 categories (51 images
per category) from the Animals with Attributes dataset (AwA) of Lampert et
al . [2] containing 85 (annotated) attributes are used.
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lives in forest, does not 
have toughskin, is not 
bulbous, does not have 
hooves, and does not live 
in fields.

is small, has pads, and is 
not strong.

is small, and is not 
strong.

is slow, and does not have 
paws.

My Specification Sheet - SC  HC Lives in 
mountains

is not bulbous 

does not have yellow 
color and chewteeth

does not have a 
tail, and is bipedal

is small, and 
not strong

is nocturnal

has buckteeth, flippers, and 
does not live on ground

has paws, and does 
not have muscles

is slow

hairless

Is not lean, and inactive

has yellow color

Fig. 2. Example specification sheets generated by our approach. Left: Simple clustering
(SC): The failure modes are listed. For illustration, we show example images belonging
to each cluster. Right: Hierarchical clustering (HC): Each path leading to a leaf is a
failure mode e.g . “is slow and has yellow color” for the right most leaf of the bottom
tree. Best viewed in color.
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Fig. 3. Performance of our generated specification sheets capture failures. Left: Pubfig,
Right: AwA

Failure Prediction: We can predict failure using ground truth attributes (mim-
icking a user using our specification sheets at test time), as well as automatically
by combining failure predictions of multiple specification sheets using pre-trained
attribute predictors. Note that automatic failure prediction can be thought of
as a classifier confidence estimate.

Metric: We evaluate the ability of our specification sheets to predict failure
using precision and recall (PR), where we evaluate how often an image predicted
by the specification sheet to be a failure truly is a failure (precision), and what
percentage of the true failures are detected by the specification sheet (recall).

Baselines: We compare our automatic failure prediction approach to other non-
semantic baselines. ClassConf (CC): The conventional approach to estimating
the confidence of a classifier is computing the entropy of the probabilistic output
of the classifier across the class labels (e.g . computed using Platts’ method [3])
to a given test instance. Boost: Our approach to automatic failure prediction
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Random SC - all SC - sel HC - all HC - sel
Pubfig 0.4473 0.5473 0.5421 0.5370 0.5291
AwA 0.6061 0.7088 0.7079 0.6942 0.6963

CC Boost SC HC Rand
Pubfig 0.64 0.64 0.68 0.68 0.45
AwA 0.77 0.74 0.77 0.77 0.61

Table 1. Area under the precision recall (PR) curve for different approaches. CC:
ClassConf, SC: simple clustering, HC: hierarchical clustering, all: using all attributes,
sel: using a subset of attributes that are easy for lay people to understand. Left:
Comparison of various approaches when using ground truth attributes at test time
(mimicking human user in the loop). Right: Comparison of various approaches to
automatic failure prediction.
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Fig. 4. Performance of our specification sheets at automatically predicting oncoming
failure. Left: Pubfig, Right: AwA.

employs multiple classifiers. This is related to boosting approaches [4]. We use
Adaboost [5] to learn the weights of 2000 decision trees. Rand: We also compare
to a baseline that assigns each image a random score between [0,1] as a likeli-
hood of failure. As seen in Table 1, and Figure 3 and Figure 4, our approach
outperforms these baselines.

4 Conclusion
We proposed a discriminative clustering approach using L1-regularized weighted
logistic regression to generate semantically understandable “specification sheets”
that describe the failure modes of vision systems. We presented promising results
for failure prediction in face and animal species recognition. We demonstrated
that the specification sheets capture failure modes well, and can be leveraged to
automatically predict oncoming failure better than a standard classifier confi-
dence measure and a boosting baseline. By being better informed via our spec-
ification sheets, researchers can design better solutions to vision systems, and
users can choose to not use the vision system in certain scenarios, increasing the
performance of the system when it is used. Downstream applications can also
benefit from our automatic failure prediction.
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