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Abstract. Current similarity-based approaches to interactive catego-
rization rely on learning metrics from holistic perceptual measurements
of similarity between objects or images. However, making a single judg-
ment of similarity at the object level can be a difficult or overwhelming
task for the human user to perform. Secondly, a single general metric
of similarity may not be able to adequately capture the minute differ-
ences that discriminate fine-grained categories. In this work, we propose
a novel approach to interactive fine-grained categorization that leverages
multiple perceptual similarity metrics learned from localized and roughly
aligned regions across images, reporting state-of-the-art results and out-
performing methods that use a single nonlocalized similarity metric.

1 Introduction

Fine-grained visual categorization (FGVC) is an area of computer vision that
has experienced an increased amount of attention in recent years across various
visual domains [4, 1-3]. The goal is to distinguish between fine-grained categories
or subcategories (e.g., a Cardinal vs. a Lazuli Bunting) that belong to the same
basic-level category (e.g., Bird). Some work has focused on interactive methods
for FGVC [1,7,2], in particular using perceptual similarity judgments from hu-
man users [8]. Perceptual similarity-based categorization systems do not require
part and attribute vocabularies, reducing both the burden on the non-expert
human users as well as the reliance on experts.

While similarity can be holistic in nature (e.g., object utility or function,
or overall shape), it can also be highly localized, for instance, when specific
corresponding regions or parts of the object differ from one other. Especially at
the fine-grained category level in which classes tend to be visually coherent, it is
likely that the small yet important characteristics that distinguish subcategories
are localizable. In these scenarios, a single metric of perceptual similarity that
is observed at the object level can be overly general, and asking a user to make
holistic nonlocalized similarity comparisons can be difficult.

By using localized similarity comparisons and constraining the user’s view
to a portion of the image, we are able to highlight certain aspects of similarity;
these localized judgments tend to be easier for humans to perform than holistic
similarity judgments (see Figure 1). Moreover, we can potentially reduce the
effect of nuisance factors such as background noise and differing object poses.
For each common region or part, we learn a separate perceptual space that
captures local visual information.
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Fig. 1. We use perceptual similarity metrics learned from localized comparisons (1(b))
to perform interactive categorization, aiming to reduce both overall human effort re-
quired as well as improve performance over using nonlocalized comparisons (1(a)).

2 Methods

Given a reference image x, our goal is to predict as quickly as possible the true ob-
ject class ¢ from C possible classes that fall within the same basic-level category.
We do so by using both computer vision and user responses to similarity-based
questions posed by the system at test-time. Our system supports two types of
similarity comparisons: nonlocalized and localized (see Figure 1). We define a re-
gion as a visually discriminative and recurring object part that does not have to
be semantically defined or meaningful. In practice, it is a spatially localized and
roughly aligned template derived from an associated descriptor (see Figure 2).

We describe as follows an extension to the system proposed by Wah et al. [8],
which supports the use of multiple similarity metrics but does not adequately
handle instance-level variations, specifically the presence of certain pose-aligned
parts in the image. We therefore require a set of regions in order to localize
similarity comparisons, as well as a methodology for choosing which images and
regions to show in the display.

In order to highlight the same localized region across images for perform-
ing localized similarity comparisons, we require instance-level region correspon-
dences. We discover a set of localized and roughly aligned mid-level discrimi-
native visual representations in an unsupervised manner [5]. This method has
multiple advantages: first, we can determine spatial correspondences between
images by using the discovered patches as detectors; second, the regions are by
nature common in gradient appearance; and last, the discovered regions may
provide implicit (albeit noisy) pose alignment. At test time, we can use these
templates as part detectors that are evaluated on input images in a sliding win-
dow manner. In generating the set of discriminative regions, we keep discovered
patches that have sufficient overlap (50%) with the ground truth object bound-
ing box. From this resulting set, we select 5 diverse and representative regions
to use in our experiments (see Figure 2).

It is likely that the localized regions may not be present in certain images;
this corresponds to a low detection score for a particular region detector. As
such, we modify the display model of [8] to take part presence into account. We
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Fig. 2. The selected discovered regions, each visualized as a HOG template alongside
the averaged image of the corresponding highest confidence positive detections.
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Fig. 3. 3(a): We visualize the first two dimensions of a learned local embedding. 3(b):
Qualitative examples using only the 5 localized similarity metrics (top) and using the
localized metrics along with a nonlocalized metric (bottom).

employ an approximate solution that groups the images into clusters to ensure
that each image in the display is equally likely to be selected, maximizing the
expected information gain. For the display, we thus pick the image within the
cluster with the highest mass as weighted by the region presence probability.

We perform experiments on the fine-grained CUB-200-2011 dataset [6] of 200
bird species. For learning the perceptual metrics, we collect similarity compar-
isons using the crowdsourcing workplace Amazon Mechanical Turk, sampling
images based on region detection scores. For each localized region, we generate
triplets from similarity comparisons to learn an independent localized embedding
(e.g., Figure 3(a)) [8]. This is then used directly in our interactive categorization
system. In order to compare to previous work, we initialize our computer vision
estimate of class probabilities using the same setup as [8], with multiclass 1-vs-all
SVMs trained on color/grayscale SIFT features and color histograms. We also
compare to a method that uses Fisher vector encodings (FVs).

3 Experiments

We present our interactive classification results in Figure 4; qualitative examples
are shown in Figure 3(b). For testing, we use an interface similar to that used
in training (Figure 1(b)). We use simulated user responses at test time; we refer
the reader to [8] for details on the user model. Our experimental setup and
performance metrics are the same as [7, 8], in which the user can verify perfectly
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Fig. 4. Interactive categorization. 4(a): We compare to prior baselines from [8]. 4(b):
We observe performance when the initial class probability estimates are improved with
Fisher vectors. 4(c): We compare performance using each localized metric separately.

the highest probability class, and we evaluate our system based on the average
number of questions a user must answer per test image to classify it correctly.

We can draw several observations from our results: (1) It is advantageous to
use localized and nonlocalized metrics together (see Figure 4(a)). (2) Localized
comparisons are more informative than nonlocalized comparisons. In general,
our interactive categorization system will tend to ask users to make localized
comparisons in the beginning, as these questions provide the most expected in-
formation gain. (3) Some localized regions are more useful for categorization than
others (see Figure 4(c)). (4) Localized similarity comparisons require less human
effort. On average, it takes a human user 11.35 £ 10.17 sec to answer a localized
comparison, compared to 16.36 & 14.31 sec for a nonlocalized comparison.

To conclude, we have presented an approach to interactive fine-grained cat-
egorization that leverages localized similarity comparisons and does not rely on
part or attribute vocabularies; we discover a set of discriminative, localized and
roughly aligned regions for this categorization task. We demonstrate that local-
ized similarity comparisons are more intuitive for users to perform, and that by
using independent localized metrics we can improve categorization accuracy over
using a single nonlocalized metric.
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