
VISUALVOICE: Audio-Visual Speech Separation with Cross-Modal Consistency
(Supplementary Materials)

Ruohan Gao1,2 Kristen Grauman1,3

1The University of Texas at Austin 2Stanford University 3Facebook AI Research
rhgao@cs.stanford.edu, grauman@fb.com

The supplementary materials for [7] consist of:

A. Broader impact.

B. Supplementary video.

C. General single-speaker model VS. dedicated two-
speaker model.

D. Separation results for seen-heard speakers VS. unseen-
unheard speakers.

E. Ablation study on the loss terms.

F. Best/worst performing pairs.

G. Network and implementation details.

H. Dataset details.

A. Broader Impact
We are conscious of possible undesirable effects that can

arise when working with data-driven approaches to human
understanding in images and video. Specifically, a method’s
training data will guide the extent to which the model can
generalize well and fairly to arbitrary inputs. To mitigate
risks in this regard, we have taken several steps. First, we
learn the cross-modal face-voice embeddings from the Vox-
Celeb2 dataset, which to our knowledge is the largest rel-
evant available dataset with over 6,000 speakers spanning
a range of different ethnicities, accents, professions, and
ages. Second, we examine the speech separation results
separately for a seen-heard test set and an unseen-unheard
test set from VoxCeleb2. The results show our method
achieves similar performance for seen-heard and unseen-
unheard speakers. This shows that our model generalizes
well to unseen-unheard speakers in VoxCeleb2 and is not
limited to handling seen-heard speakers in the training data.

Finally, the output of our model consists of voices sepa-
rated from the the original test video—in terms of masking
the input spectrogram—as opposed to being generated or
machine synthesized. This is important because it means

our model is not free to hallucinate arbitrary voice sounds
for the input speakers, e.g., the model cannot artificially
conjure sounds or words often associated with training faces
that happen to look like the input speaker unless they are
consistent with the input sounds. Indeed, as shown in re-
sults in the main paper, lip motion continues to play a
key role during speech separation, isolating words based
on their visual agreement with what was physically spo-
ken. The learned cross-modal face-voice embeddings com-
plement lip motion cues to further enhance the separation
results, particularly when lip motion is harder to read or the
two input faces are very different in appearance.

To further explore the model’s performance as a function
of a person’s race, gender, ethnicity, or other identity data, it
would be interesting to sort results by the relative impact of
our model along each dimension independently. However,
existing meta-data does not permit this study (VoxCeleb2
only provides identity and gender labels). We hope to ana-
lyze the per-category performance of our models for these
cross-modal speaker attributes when datasets as such meta-
data and/or new dataset efforts become available.

B. Supplementary Video
In the supplementary video1, we show example sepa-

ration results. We first show audio-visual speech separa-
tion and enhancement results on real-world test videos of
multiple speakers in various challenging scenarios includ-
ing presidential debates, zoom calls, interviews, and noisy
restaurants. Next, we show some qualitative results on syn-
thetic mixtures from the VoxCeleb2 dataset and compare
with the AV-Conv [2] baseline and our static face based
model. Finally, we show some failure cases of our model.

C. General Single-Speaker Model VS. Dedi-
cated Two-Speaker Model

As mentioned in Sec. 3.2 in the main paper, we can ei-
ther build an audio-visual feature map for each speaker in

1http://vision.cs.utexas.edu/projects/
VisualVoice/
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the mixture to separate their respective voices or build a
model tailored to two-speaker speech separation. For the
former case, the model can be generally applicable in test-
ing scenarios where the number of speakers is unknown,
while the latter only applies to two-speaker speech separa-
tion but can benefit from the contextual visual information
of the other speaker in the mixture. For audio-visual speech
separation on VoxCeleb2, the model tailored to two-speaker
speech separation achieves SDR of 10.2, while the general
single-speaker model achieves SDR of 9.88. Most of our
experiments are on two-speaker speech mixtures due to its
wide applications in real-world. Note that a model tailored
to more than two speakers can be similarly built by concate-
nating the visual features of all the speakers in the mixture.

D. Separation Results for Seen-Heard Speak-
ers VS. Unseen-Unheard Speakers

Table 1 shows the speech separation results separately
for the seen-heard test set and the unseen-unheard test set on
the VoxCeleb2 dataset. We can see that the methods purely
based on lip motion tend to have similar performance for
seen-heard and unseen-unheard speakers. For models that
reply on facial appearance, the separation performance is
slightly better on the seen-heard test set because the learned
cross-model face-voice embeddings are more reliable for
seen-heard speakers. Our method leverages both the lip mo-
tion and the cross-modal facial attributes, generalizing well
to unseen-unheard speakers.

To further verify that it is beneficial to disentangle lip
motion and cross-modal facial attributes, we show a base-
line called Face-Track, which directly processes the full
face track to extract visual features similar to prior work [4].
The gain of our method demonstrates that it is helpful to fo-
cus specifically on the lip regions (mouth ROIs) when an-
alyzing the lip movements for separation, and the cross-
modal face-voice embeddings learned through our multi-
task learning framework can better exploit the complemen-
tary facial appearance cues to enhance separation.

E. Ablation Study on Loss Terms
We perform an ablation study to examine the impact of

the key components of our VISUALVOICE framework. We
empirically set λ1 and λ2 by tuning on validation data. Note
that the loss terms are not normalized for similar scales, so
the absolute values of the loss weights do not directly indi-
cate their impact on learning. Table 2 compares the speech
separation performance of several variants of our model on
the VoxCeleb2 dataset. We compare our model with one
variant that only uses the mask-prediction loss; one variant
without using the cross-modal matching loss; one variant
without using the speaker consistency loss. We can see that
the mask-prediction loss provides the main supervision for
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Figure 1: Qualitative examples of the best performing pairs
(first row) and worst performing pairs (second row) for our
static-face image based model.

SIR improvement: 8.1 SIR improvement: 7.2 SIR improvement: 6.5 

SIR improvement: 5.8 SIR improvement: 5.7 SIR improvement: 4.7 

Figure 2: Qualitative examples of the pairs with the largest
improvement from cross-modal face-voice embeddings.

learning speech separation. Together with the cross-modal
matching loss and speaker consistency loss, we achieve the
best results both for our full model and our static face based
model. It’s possible that a more rigorous hyperparameter
search of the loss weights can lead to better performance.

F. Best/Worst Performing Pairs
Fig. 1 illustrates the best and worst performing pairs for

speech separation using synthetic pairs for our static face
model. Pairs that perform the best tend to be very different
in terms of facial attributes like gender, age, and nationality
(first row). Speech separation can be hard if the two mixed
identities are visually similar or the facial attributes are hard
to obtain from only a static face image due to occlusion or
irregular pose (second row).

To further understand when the cross-modal face-voice
embeddings help the most, we compare the per-pair perfor-
mance of our model with only lip motion and our full model
in Fig. 2. The pairs with the largest improvement from the
cross-modal face-voice embeddings tend to be those that ei-
ther have very different facial appearances or whose lip mo-
tion cues are difficult to extract (e.g., non-frontal views).

G. Network and Implementation Details
Our audio-visual speech separator network uses the vi-

sual cues in the face track to guide the speech separation
for each speaker. The visual stream of our network con-



Seen-Heard Unseen Unheard
SDR SIR SAR PESQ STOI SDR SIR SAR PESQ STOI

Audio-Only [14] 8.00 13.9 10.1 2.63 0.82 7.70 13.6 9.85 2.59 0.82
AV-Conv [2] 8.94 14.8 11.2 2.73 0.84 8.89 14.8 11.1 2.72 0.84
Face-Track 9.28 15.8 11.2 2.76 0.85 9.20 15.6 11.0 2.75 0.84

Ours (static face) 7.37 12.2 10.7 2.54 0.80 7.06 11.8 10.6 2.49 0.80
Ours (lip motion) 9.96 16.9 11.2 2.81 0.86 9.94 17.0 11.1 2.80 0.87

Ours 10.3 17.2 11.4 2.83 0.87 10.1 17.2 11.2 2.82 0.87

Table 1: Audio-visual speech separation results on the VoxCeleb2 dataset. We show the performance separately for seen-
heard test set and unseen-unheard test set. Higher is better for all metrics.

Ours (static face) Ours
SDR SIR SAR PESQ STOI SDR SIR SAR PESQ STOI

Only mask prediction loss 6.69 10.9 10.3 2.43 0.75 9.81 16.4 10.9 2.76 0.82
Without cross-modal matching loss 6.95 11.4 10.4 2.48 0.77 9.93 16.7 11.1 2.79 0.84
Without speaker consistency loss 7.10 11.7 10.4 2.50 0.79 10.0 17.0 11.1 2.81 0.86

All losses 7.21 12.0 10.6 2.52 0.80 10.2 17.2 11.3 2.83 0.87

Table 2: Ablation study on the loss terms. Higher is better for all metrics.

sists of two parts: a lip motion analysis network and a facial
attributes analysis network.

The lip motion analysis network takes 64 mouth regions
of interest (ROIs) as input. To obtain the ROIs from the face
track, we use an SFD face detector [15] to detect 68 facial
landmarks. Following [11], the faces are then aligned to a
mean reference face to remove differences related to rota-
tion and scale using a similarity transformation. A 96× 96
ROI is cropped once the center of the mouth is located for
each frame. During training, we use random horizontal flip-
pling, random croping of size of 88 × 88. During test-
ing, the center patch is used. We use gray-scale images
for the mouth ROIs as the input to the lip motion anal-
ysis network, which consists of a 3D convolutional layer
with kernel 5 × 7 × 7 followed by a ShuffleNet-V2 net-
work and a temporal convolutional network. The temporal
convolutional network takes the time-indexed sequence of
feature vectors extracted from the ShuffleNet-V2 network,
and maps it into another such sequency through the use of a
1D temporal convolution. See [11] for details. Finally, we
obtain a feature map of lip motion of dimension 512× 64.

The face attributes analysis network is a ResNet-18 net-
work that takes an image of size 224×224 as input, and the
feature map after the final pooling layer is downsampled to
dimension of Vf = 128 through a fully-connected layer.
We replicate the facial attributes feature along the time di-
mension to concatenate with the lip motion feature map and
obtain a final visual feature of dimension 640× 64.

On the audio side, we use a U-Net [13] style network
similar to [6, 16, 5], but here we tailor the network to
audio-visual speech separation. It consists of an encoder
and a decoder network. The input to the encoder is the

complex spectrogram of the mixture signal of dimension
2 × 257 × 256. The input is first passed through 2 con-
volutional layers (kernel size = 4, stride = 2, padding = 1)
that downsample the frequency and time dimension until
the time dimension is equal to N = 64. Then we use 6
conv-blocks that each consist of two convolutional layers
(kernel size = 3, stride = 1, padding = 1) followed by a
frequency pooling layer. The first two convolutional lay-
ers in each conv-block preserve the spatial dimension and
the frequency pooling layer after it reduces the frequency
dimension by a factor of 2 while preserving the time di-
mension. Next, we use a Tanh layer to map the output
feature map values to the range of [-1, 1]. Because the
real and imaginary parts of the ground-truth complex mask
typically lie between -5 and 5, we further use a Scaling

operation to scale the output by 5. Finally, we obtain a
bounded predicted complex mask of the same dimension
as the input spectrogram for the speaker. In source separa-
tion tasks, spectrogram masks have proven better than al-
ternatives such as direct prediction of spectrograms or raw
waveforms [4, 6]. The 1D time series audio signal varies
widely with small distortions, and perceptual information
is difficult to extract directly. STFT separates the frequen-
cies and amplitudes, generating a spectrogram that is more
structured and can be analyzed similarly to an image using
a CNN. The mask makes the prediction target bounded and
further regularizes the learning process.

The voice attributes analysis network has the same con-
figuration as the face attributes analysis network except
the first layer of the ResNet-18 network takes the sepa-
rated complex spectrogram of dimension 2 × 256 × 256
as input. Similarly, the feature map after the final pooling



layer is downsampled to dimension of 128 through a fully-
connected layer.

H. Dataset Details

Our experiments on audio-visual speech separation and
enhancement are mainly on the VoxCeleb2 dataset due to
the availability of the pre-computed face tracks and iden-
tity labels, which allow us to explicitly test for speaker-
independent performance. For audio-visual enhancement
experiments, we additionally mix the speech mixture with
non-speech audios in AudioSet [8] (excluding the speech
category from the ontology) as background noise. We mix
with audios from the official training split / evaluation split
during training and testing, respectively.

We also evaluate on four standard benchmark datasets
below to compare our model with a series of state-of-the-
art audio-visual speech separation and enhancement meth-
ods in Sec.4.3.2 in the main paper: 1) Mandarin [10] is
an audio-visual dataset prepared by Hou et al. [10] con-
taining video recordings of Mandarin sentences spoken by
a native speaker. Each sentence is approximately 3-4 sec-
onds and contains 10 Chinese characters with the phonemes
designed to distribute equally. We use the official test set
that contains 40 clean utterances, mixed with the 10 noise
types (e.g., crying, music, offscreen speakers, etc.) at 5
dB, 0 dB, and -5 dB SIRs and car engine ambient noise;
2) TCD-TIMIT [9] consists of 59 volunteer speakers with
around 200 videos each. The speakers are recorded say-
ing various sentences from the TIMIT dataset. We mix ev-
ery clip with another clip of a random speaker to evaluate
the speech separation performance; 3) CUAVE [12] is an
audio-visual speech database consisting of videos of con-
nected and continuous digits spoken in different situations
by various speakers. The ground-truth audio for one speaker
in the mixture is avaialble to evaluate the separation perfor-
mance; 4) LRS2 [1] is a dataset for lip reading that consists
of 224 hours of videos long with pre-computed face tracks
of the speakers. We follow the setting of [3] and evaluate
our model using only videos that are between 2 - 5 seconds
long.
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