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Abstract

We propose an approach to learn action categories from

static images that leverages prior observations of generic

human motion to augment its training process. Using unla-

beled video containing various human activities, the system

first learns how body pose tends to change locally in time.

Then, given a small number of labeled static images, it uses

that model to extrapolate beyond the given exemplars and

generate “synthetic” training examples—poses that could

link the observed images and/or immediately precede or

follow them in time. In this way, we expand the training

set without requiring additional manually labeled exam-

ples. We explore both example-based and manifold-based

methods to implement our idea. Applying our approach to

recognize actions in both images and video, we show it en-

hances a state-of-the-art technique when very few labeled

training examples are available.

1. Introduction

Action recognition is a challenging vision problem with

applications in video search, surveillance, auto-tagging, and

human-computer interfaces. While researchers have trained

activity models from video data for many years, there is

increasing interest in methods that can learn an action cat-

egory from static image snapshots [17, 33, 34, 7, 36, 35].

Learning and predicting actions from an image (rather than

a video) is appealing for several reasons. First, labeling

training videos is more expensive; it requires more elab-

orate annotation interfaces, more work by annotators, and

it can even be ambiguous in terms of when the action starts

and ends. Second, collecting “staged” videos of activity can

be tricky to do realistically; arguably, it is more manageable

to capture realistic individual photos. Third, the ability to

infer actions from static inputs has potential to aid object

and scene recognition, since all three can serve as mutual

context.

However, training an action recognition system with
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Figure 1. Our approach learns about human pose dynamics from

unlabeled video, and then leverages that knowledge to train novel

action categories from very few static snapshots. The snapshots

and video (left) are used together to extrapolate “synthetic” poses

relevant to that category (center), augmenting the training set. This

leads to better generalization at test time (right), especially when

test poses vary from the given snapshots.

static snapshots presents its own challenges. How can we

be assured to adequately cover the space of an action with

an array of training photos? If benchmark datasets restrict

train and test data to “canonical” instants of the action (e.g.,

the tennis player with the racquet outstretched), how will

the methods generalize when faced with less exaggerated

views in the wild? Can one photo sufficiently convey what

is really a spatio-temporal event?

With these questions in mind, we contrast human capa-

bilities with current methods. People can understand a hu-

man activity by looking at just a few static snapshots, yet to-

day’s systems typically require hundreds of such exemplars

to learn an action category well. Human viewers have an

important advantage, however: prior knowledge of how hu-

man poses tend to vary in time. This undoubtedly helps “fill

the gaps” between a sparse set of snapshots, and thereby im-

proves generalization. See Figure 1.

Building on this intuition, we propose an approach to
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learn action categories from a small number of static images

by leveraging prior observations of generic human motion

to augment the training process. Given unlabeled video,

the system first learns how body pose changes over time.

We assume this video has some human activity in it, and

that humans are often detectable when present, but other-

wise make no assumptions about which actions are present

in the data. Then, given a small set of labeled images for an

action category, the system uses the generic knowledge ob-

tained from watching the video to extrapolate beyond those

exemplars during training. In particular, it augments its la-

beled set with “synthetic” examples, which depict poses that

could immediately precede or follow the given examples in

time. In this way, we expand the training set without requir-

ing additional manually labeled examples.

We explore two ways to implement our idea. The first

uses an example-based representation of pose dynamics; we

match the labeled training images to unlabeled video frames

based on their pose similarity, and then augment the training

set with the poses appearing before and after the matched

frames. The second technique uses a manifold-based repre-

sentation; we learn a nonlinear manifold over body poses,

relying on the temporal nearness of the video frames to es-

tablish which should maintain proximity. Then, we map the

static training instances to the manifold, and explore their

neighborhoods on the manifold to augment the training set.

In both cases, we adopt a part-based representation of pose,

and use domain adaptation to account for the mismatch be-

tween the source images and the unlabeled video. We show

that our synthetic expansions to the training set yield more

accurate predictions, especially when labeled data is quite

sparse. Notably, the gains come at no additional labeling

cost, since we make no assumptions about which actions

appear in the unlabeled video.

Limited prior work considers ways to synthetically pad

training sets for recognition. This includes the now com-

monplace trick of inserting mirrored images for training

object detectors (e.g., [20]), as well as the use of graph-

ics software to generate images of people (often driven by

mocap) with variable clothing and body sizes to train pose

estimators [26, 12, 27]. We also share the goal of expanding

the training pool for virtually no cost. However, whereas

prior methods aim to introduce variation in (instantaneous)

appearance, ours aims to imagine the variation over time.

Furthermore, the source of our new examples is data-driven,

not parameterized by hand.

We demonstrate the proposed approach to recognize ac-

tions in both static images and videos from multiple chal-

lenging datasets. The results show that by letting the sys-

tem first “watch” generic video, it can successfully infer

additional plausible poses that bolster training. For our tar-

get scenario where training examples are very few, our ap-

proach outperforms both a method limited to the original

static exemplars, as well as alternative methods to pad the

data by introducing appearance variation.

2. Related Work

Activity recognition and human motion analysis have a

rich literature [1]. To learn activities from video, earlier

work emphasized tracking and explicit body-part models

(e.g., [19, 23, 22]). In parallel, many methods to estimate

body pose have been developed, including techniques us-

ing nonlinear manifolds to represent the complex space of

joint configurations [12, 32, 3, 16, 28, 29]; in contrast to

our work, such methods assume silhouette (background-

subtracted) inputs and/or derive models from mocap data,

and are often intended for motion synthesis applications.

More recently, researchers have considered how activity

classes can be learned directly from lower-level spatio-

temporal appearance and motion features—for example,

based on bag-of-words models for video (e.g., [15, 31]). By

sidestepping tracking and pose, this general strategy offers

robustness and can leverage strong learning algorithms; on

the other hand, the lack of top-down cues suggests more

data is critical to learn the needed invariance.

More relevant to our problem, recent work considers

action recognition in static images. During both train-

ing and testing, these algorithms use only static snap-

shots of the actions of interest. Most current methods rely

on a combination of pose- and appearance-based descrip-

tors [33, 17, 7, 36, 35]. In particular, “poselets” [4]—local

part-based features mined for their consistency with frag-

ments of body pose—have proven to be a promising repre-

sentation [33, 17, 7], as well as high-level descriptors that

also incorporate interactions with objects [8, 34, 7, 36]. We

adopt the “poselet activation vector” representation [17] to

describe pose in our implementation. Our focus is artifi-

cially expanding the training set for “free” via pose dynam-

ics learned from unlabeled data, regardless of the specific

descriptor. Thus, our contribution could potentially benefit

any of these prior models.

We use domain adaptation to account for the possible

mismatch in statistics between the video frames and im-

ages. Domain adaptation can improve event learning across

two domains of videos, such as Web videos to consumer

videos [10] or one benchmark dataset to another [5], and it

can also help train an object detector from videos [21]. A

novel technique to use multiple source domains and a mix

of static and dynamic features is developed in [9].

As discussed above, our idea can also be viewed in

the context of work that pads the training set with syn-

thetic data. A standard way to expand object detection

training data is by mirroring the images along the verti-

cal axis (e.g., [20] and many others). This trick has even

been employed to produce flipped versions of video se-

quences for activity recognition [31]. The availability of



humanoid models in graphics software, together with mo-

cap data, make it possible to generate synthetic images use-

ful for training action recognition [18] and pose estimation

methods [26, 12, 27]. Web images noisily labeled by tags

can also serve as a “free” source of data for action classifica-

tion [13]. No prior work attempts to augment action images

with unlabeled video samples, as we propose. Furthermore,

whereas past methods aim to better populate the appear-

ance space for a class (e.g., people in different clothes; the

object facing the other direction), our idea is to better pop-

ulate the pose parameter space as learned from unlabeled

video.

3. Approach

Our approach augments a small set of static images la-

beled by their action category by introducing synthetic body

pose examples. The synthetic examples extend the real ones

locally in time, so that we can train action classifiers on a

wider set of poses that are (likely) relevant for the actions

of interest.

We first define the representation we use for pose

(Sec. 3.1). Then, after describing our video data require-

ments (Sec. 3.2), we present two methods to infer synthetic

pose examples; one is example-based (Sec. 3.3.1), the other

is manifold-based (Sec. 3.3.2). Finally, we explain how we

use a mix of real and synthetic data to train a classifier that

can predict actions in novel static images (Sec. 3.4).

3.1. Representing Body Pose

We use a part-based representation of pose called a pose-

let activation vector (PAV), adopted from [17]. A pose-

let [4] is an SVM classifier trained to fire on image patches

that look like some consistent fragment of human body

pose. For example, one poselet might capture arms crossed

against the chest, or a left leg bent at the knee, or even the

whole body of a seated person. The PAV records the “ac-

tivation strength” of all poselets appearing within a person

bounding box. Specifically, after running a bank of P pose-

let classifiers on an image, we take those poselet detections

that overlap with a person bounding box, and record a vec-

tor p = [p1, . . . , pP ] where pi is the sum of the i-th classi-

fier’s probability outputs. Figure 2 shows this process, and

the blurry images in Figure 3 depict example poselets in

terms of the averaged image patches used to train them. We

use the P = 1200 poselets provided by [17].

We use this descriptor because it captures human body

pose at a high level, and it is robust to occlusion and clut-

tered backgrounds. While it is quite simple—essentially a

histogram of local pose estimates—it is also powerful. The

poselets themselves offer a rich encoding of diverse poses,

and they are detectable in spite of differences in appear-

ance (e.g., clothing, race). Further, since they are specific to

body configurations, the PAV implicitly captures spatial lay-

Figure 2. The PAV representation summarizes those detected pose-

lets in the image that overlap with the person bounding box.

out. Since 2D HOG descriptors underly the poselet classi-

fiers, they are naturally sensitive to substantial 3D viewpoint

changes. This is fine for our data-driven approach, which

will synthesize poses that expand exemplars as viewed from

a similar viewpoint.

3.2. Unlabeled Video Data

Our method requires access to unlabeled videos contain-

ing human activity. The video has no action category la-

bels associated with it, and the activity is not segmented in

any way. In particular, we do not assume that the activities

present belong to the same categories as we will observe

in the static training images. The category-independence

of the video data is crucial. We would like the system to

build a model of human motion dynamics—typical changes

of body pose over time—without knowing in advance what

novel actions it will be asked to learn from snapshots. In-

tuitively, this suggests that a large and diverse set of clips

would be ideal, as we cannot hope to extrapolate poses for

inputs that are unlike anything the system has seen before.

In our current implementation, we use video from the Hol-

lywood dataset [15] to form the unlabeled pool.

We assume that the humans appearing in the video can

often be detected and tracked, i.e., using state-of-the-art hu-

man detectors and tracking algorithms, so that we can ex-

tract pose descriptors from human bounding boxes. We also

expect that the video and snapshots come from roughly sim-

ilar sensor types, meaning that we would not attempt to use

dynamics learned from overhead aerial video (where peo-

ple are blobs of tens of pixels) to help recognition with

snapshots taken on the ground (where people have substan-

tially greater resolution and body parts are visible). This

is a very mild requirement, since plenty of ground video is

available to us via YouTube, Hollywood movies, and so on.

In fact, our method explicitly builds in some flexibility to

data source mismatches due to its use of domain adaptation,

as we will discuss later.

To pre-process the unlabeled video, we 1) detect people

and extract person tracks, 2) compute a PAV pose descriptor

for each person window found, and 3) either simply index

those examples for our exemplar-based method or else com-

pute a pose manifold for our manifold-based method (both

are defined in Sec. 3.3). Note that because this video is un-

labeled, our method will enhance the training set with no

additional manual effort.



3.3. Generating Synthetic Pose Examples

Our key idea is to expand limited training data by explor-

ing unlabeled video, which implicitly provides rules gov-

erning how human pose changes over time for various activ-

ities. Thus, the heart of our method is to generate synthetic

pose examples. We investigate two strategies: example-

based and manifold-based.

Let S = {(pi
1, y1), . . . , (p

i
N , yN )} denote the N train-

ing snapshots our system receives as input, where the super-

script i denotes image, and each pi
j ∈ R

P is a PAV descrip-

tor with an associated action class label yj ∈ {1, . . . , C}
(e.g., running, answering phone, etc). Let {t1, . . . , tK} de-

note the K person tracks from the unlabeled video, and let

each track tk be represented by a sequence of PAV descrip-

tors, tk = (pv
k1

, . . . ,pv
kM

), where superscript v denotes

video, and kM is the number of frames in the k-th track.

3.3.1 Example-based strategy

Our example-based method treats the video as a non-

parametric representation of pose dynamics. For each train-

ing snapshot pose pi
j , we find its nearest neighbor pose in

any of the video tracks, according to Euclidean distance

in PAV space. Denote that neighbor pv
j∗ . Then, we sim-

ply sample temporally adjacent poses to pv
j∗ to form syn-

thetic examples that will “pad” the training set for class yj .

Specifically, we take pv
j∗
−T and pv

j∗+T , the poses T frames

before and T frames after the match (accounting for bound-

ary cases if the neighbor starts or ends a track). See Fig-

ure 3.

We repeat this process for all training snapshots, yield-

ing an expanded training set S+ with two new syn-

thetic examples for each original snapshot: S+ = {S ∪
{(pv

j∗
−T , yj), (p

v
j∗+T , yj)}

N
j=1}. In our experiments, we

set T = 10 in order to get frames showing poses that would

occur just before or after the matched pose, without being

too visually redundant. In preliminary tests, we found the

method is not very sensitive to this parameter within the

range T = 5, . . . , 20, and simply fixed it at 10.

3.3.2 Manifold-based strategy

We also explore a method to extrapolate poses using a non-

linear pose manifold. Whereas the example-based method

extrapolates pose solely in the temporal dimension—and

solely using one sequence at a time—the manifold variant

unifies connections in both appearance and dynamics, and

it effectively samples synthetic examples from a mix of se-

quences at once.

To construct the manifold, we use the locally lin-

ear embedding (LLE) algorithm [25]. LLE constructs

a neighborhood-preserving embedding function that maps

high-dimensional inputs in R
P to a low-dimensional non-

linear manifold in R
d. The manifold is represented as a
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Figure 3. For each labeled training snapshot (top left), we use its

pose description (depicted in bottom left) to find a neighbor in

the unlabeled video (center panel). Then we synthesize additional

training poses based on its temporal neighbors or nearby instances

on a pose manifold (right panel). Best in color.

set of globally consistent linear subspaces, and the solution

to minimize its reconstruction error relies on an eigenvalue

problem. The algorithm takes as input a set of data points

and their respective k nearest neighbors, and returns as out-

put all points’ low-dimensional coordinates.

We use the PAVs from the unlabeled video to build the

manifold. Recall that pkq
denotes the PAV for the q-th

frame within the k-th track in the unlabeled video (drop-

ping the superscript v for clarity). We determine neighbors

for LLE using a similarity function capturing both temporal

nearness and pose similarity: A(pkq
,pjr

) =

λ exp
(

−
∥

∥pkq
− pjr

∥

∥ /σp

)

+(1−λ) exp (−‖q − r‖ /σt) ,

where ‖q − r‖ = ∞ if k 6= j, that is, if the two inputs are

from different tracks. Here σp and σt are scaling parame-

ters, set to the average distance between all PAVs and frame

numbers, respectively, and the weight λ controls the influ-

ence of the two terms. Note that an example’s neighbors

under A can span poses from both the same and different

tracks. After applying the LLE embedding, each original

PAV pv ∈ R
P has a low-dimensional counterpart p̂v ∈ R

d.

Next, for each training snapshot, we find nearby poses

on the manifold to generate synthetic examples. Specif-

ically, for snapshot pi
j with nearest neighbor pv

j∗ in PAV

space, we take the associated p̂v
j∗ manifold coordinate, and

compute its closest two embedded points from the video.1

(We choose two simply to be consistent with the example-

based method above.) Finally, we augment the training set

similarly to above, putting the original PAVs for those two

instances labeled with the snapshot’s category into S+.
1One could alternatively use an out-of-sample extension to LLE [2]

when collecting the manifold neighbors.



Discussion Whether example- or manifold-based, we

stress that the synthetic examples exist in pose space—not

raw image space. Thus, we are padding our training set

with plausible poses that could immediately precede or fol-

low the observed static snapshot poses, and ignoring sur-

rounding context, objects, etc. Furthermore, it is entirely

possible that the action the person in the video was perform-

ing when taking on that pose was not the action labeled in

the static snapshot. Our idea is that the generic human mo-

tion dynamics gleaned from the unlabeled video allow us

to extrapolate the poses observed in novel static images, at

least to very near instants in time. This allows, for exam-

ple, the system to infer that a kicking action could take on

more diverse poses than the few available in the training set

(compare left and right panels in Figure 1).

3.4. Trainingwith aMix of Real and Synthetic Poses

Finally, we use the augmented training set S+ to train

SVM action classifiers to predict the labels of novel im-

ages. Rather than directly use the data as-is, we specifi-

cally account for the uncertainty in the synthetic examples

in two ways. First, we employ domain adaptation to account

for the potential mismatch in feature distributions between

the labeled snapshots and unrelated video. Second, we use

penalty terms in the SVM objective that put more emphasis

on satisfying the label constraints for the real data examples

compared to the synthetic ones.

Domain adaptation (DA) techniques are useful when

there is a shift between the data distributions in a “source”

and “target” domain. They typically transform the data in

some way that accounts for this discrepancy—for example,

by mapping to an intermediate space that shares characteris-

tics of both domains. In our case, we can think of the static

snapshots (whether training or testing) as the target domain,

and the unlabeled video as the source domain.

We use the “frustratingly simple” DA approach of [6].

It maps original data in R
P to a new feature space of di-

mension R
3P , as follows. Every synthetic (source) pose

example pv is mapped to pv′

= [pv,pv,0], where 0 =
[0, . . . , 0] ∈ R

P . Every real (target) pose example is

mapped to pi′ = [pi,0,pi]. This augmentation expands

the feature space into a combination of three versions of it:

a general version, a source-specific version, and a target-

specific version. The classifier benefits from having access

to all versions to find the most discriminative decision func-

tion.

Given the domain-adapted features, we train one-vs.-all

SVM classifiers. During training, we want to reflect our

lower confidence in the synthetic training examples, as well

as account for the fact that they will outnumber the real ex-

amples. Thus, we use two separate constants for the slack

penalty C in the standard SVM objective, in order to pe-

nalize violating label constraints on real data more heav-

ily. Specifically, the cost for label errors on the real exam-

ples Creal is set to 1, while the cost for synthetic examples

Csynth ≤ 1 (set via cross-validation). This weighting, com-

bined with the soft-margin SVM, will give some resilience

to off-base synthetic pose examples wrongly hypothesized

by our method. This can occur, for example, if the nearest

PAV or manifold neighbor is quite distant and thus serves as

a weak proxy for the training snapshot’s pose.

4. Experimental Results

We demonstrate our approach on three datasets for rec-

ognizing activities in both images and videos.

4.1. Datasets

For the unlabeled video data, we use the training

and testing clips from the Hollywood Human Actions

dataset [15]. We stress that none of the activity labels are

used from these clips. In fact, only one label in Hollywood

overlaps with any of the data below (phoning is in both PAS-

CAL and Hollywood). To get person tracks, we use the an-

notation tool provided by [30]. This allows us to focus our

evaluation on the impact of our method, as opposed to the

influence of a particular person tracking method.

For the recognition task with static test images, we test

on both the 9 actions in the PASCALVOC 2010 dataset [11]

(phoning, playing instrument, reading, riding bike, riding

horse, running, taking photo, using computer, walking) as

well as 10 selected verbs from the Stanford 40 Actions

dataset [36] (climbing, fishing, jumping, playing guitar, rid-

ing a bike, riding a horse, rowing a boat, running, throw-

ing frisbee, walking the dog). While the latter has 40 total

verbs, we limit our experiments to those 10 where the base-

line has reasonable precision using a body pose descriptor

alone; many of the others are strongly characterized by the

objects that appear in the scene. We call it Stanford 10.

For PASCAL, we use (maximally) the 301 persons from the

training set to train, and the 307 persons in the validation set

to test. For Stanford 10, we randomly select (maximally)

250 and 1672 persons for training and testing, respectively,

based on the train/test split suggested by the authors.

For the video recognition task, we compile a test set from

multiple video sources, since no existing video dataset has

both images and videos for a set of action labels. We gather

78 test videos from the HMDB51 [14], Action Similarity

Labeling Challenge [14], and UCF Sports [24] datasets that

contain activities also appearing in PASCAL: phoning, rid-

ing bike, riding horse, running, and walking. Note that the

unlabeled video source remains the Hollywood data for this

task; in all cases, the only labels our method gets are those

on the static snapshots in PASCAL.

We fix the dimensionality for LLE d = 10, and the affin-
ity weight λ = 0.7. We use χ2-kernels for the SVMs, and

set the SVM penalty Csynth = 0.1 for image recognition
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Figure 4. Accuracy on static action recognition datasets as a func-

tion of the number of training images. Our method shows dramatic

gains with very few labeled snapshots, and maintains similar ac-

curacy to the baseline when training exemplars are plentiful.

and Csynth = 0.5 for video recognition, based on valida-

tion with the PASCAL training data.

4.2. Recognizing Activity in Novel Images

The primary comparison of interest is to see whether

recognition improves when adding our synthetic training

data, versus a baseline that does everything else the same

(i.e., PAV representation, SVM, etc.), but uses only the

original training snapshots. This baseline corresponds to

the state-of-the-art method of [17], and we denote it Orig-

inal throughout. In addition, we provide two more base-

lines to help isolate the reason for our method’s advantage.

The first, Original+random, replaces our method’s near-

est neighbor selection with a randomly selected video pose.

The second, Original+synthetic-current-frame, uses only

the matched neighbor to synthesize an example (i.e., it lets

T = 0). This baseline is useful to see the extent to which

we need to extrapolate poses across time (dynamics), ver-

sus merely padding the data with variations in appearance

(similar instances of the same pose).

Figure 4 shows the mean average precision (mAP) test

accuracy as a function of the number of training images,

for both static image datasets. To robustly estimate ac-

curacy with few training samples, we run the experiment

five times with different randomly sampled training images

(when using less than all the data) and report the average.

Our approach substantially boosts accuracy when few train-

ing snapshots are available. As expected, having only few

exemplars accentuates our method’s ability to “fill in” the

Reading 
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Taking photo 
Using computer 

Riding bike 

Figure 6. Per class accuracy gains by our methods as a function of

the diversity of the original PASCAL data. See text.

related poses. On the other hand, when training examples

are plentiful (hundreds), there is less to be gained, since

more variation is already visible in the originals; in fact, our

results are comparable to the baseline’s in the rightmost part

of the plots.2 Adding poses from random frames degrades

accuracy across the board, confirming that our method’s

gain is not due to having more pose examples; rather, it syn-

thesizes useful ones relevant to the recognition task. Adding

a pose from the neighbor frame itself (“current”) increases

the baseline’s accuracy by synthesizing more varied appear-

ances of the poses in the training set, but it is inferior to

using the pose dynamics as proposed.

Figure 5 shows examples of images responsible for syn-

thetic poses added to the original training set for PASCAL.

We see how useful poses can be found across activity cat-

egories. For example, the bottom image of a man phon-

ing has synthetic poses generated from a man who is not

phoning—but who nonetheless takes on poses and facial

expressions that could have been (were the objects in the

scene different). In the special case that a familiar action

actually appears in the unlabeled video, it too can help, as

we see in the horse-riding and walking examples. In all ex-

amples, notice how the synthetic examples simulate slight

variations over time. This is how our approach fleshes out

the training set.

Note that our improvements are in spite of the fact that

only one label overlaps between PASCAL and Hollywood,

and zero overlap between Stanford 10 and Hollywood. We

find that for the largest training set size on PASCAL (N =
301), 23 PASCAL images match to a Hollywood clip that

shows the verb phoning. Among those 23, only two of them

are themselves phoning. Hence, our results clearly show the

category-independent nature of our approach. Poses from

distinct actions are relevant to connect the dots between

sparse exemplars.

Next we compare our example- and manifold-based

strategies for gathering pose neighbors. The mAP averaged

2And our numbers roughly replicate those reported in [17] for

PASCAL—we obtain 57.94 vs. 59.8 mAP when using all training data.
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Figure 5. Six real examples showing the frames our method found in unlabeled video (left and right panels) and used to expand the original

training poses in snapshots (center panel). Each pose in the center panel finds a neighbor in the unlabeled video p
v
j∗ , which generates

a synthetic example for what could come immediately before (pv
j∗−T , left) and after (pv

j∗+T , right) that pose. Red/yellow/green boxes

denote person bounding boxes, and smaller cyan boxes denote poselet detections. Dotted arrows connect to corresponding synthetic frames.

over all classes (Fig. 4) is fairly similar for both. Figure 6

shows the AP gain of our two methods (compared to Orig-

inal) for each individual class in PASCAL when training

with N = 20 examples (ignore the x dimension for now).

Indeed, for many classes their gains are similar. However,

manifold-based has a noted advantage over example-based

for the actions running and using computer. On Stanford

10, it is stronger for running and climbing (not shown).

What these actions seem to have in common that they en-

tail some repeated motion. We hypothesize the manifold

does better in these cases since it captures both temporally

nearby poses and appearance variations.

Figure 6 also shows that there is a correlation between

those classes most benefited by our method and their lack

of diversity. We measure diversity by the average inter-PAV

distance among training examples. Low distance means low

diversity. Just as a training set that is too small needs our

method to fill in intermediate poses, so too a class whose

examples are too tightly clustered in pose space (e.g., due

to a dataset creator’s unintentional bias towards “canonical

poses”) may benefit most from our method.

Table 1 isolates the impact of domain adaptation on our

results, when the number of training examples N = 30.
(The impact is very similar no matter the training set size.)

We see that DA gives a modest but noticeable gain in accu-

Dataset PASCAL Stanford 10

Domain-adaptation? No Yes No Yes

Example-based 0.4243 0.4320 0.3308 0.3378

Manifold-based 0.4271 0.4327 0.3328 0.3404

Table 1. Impact on mAP of domain adaptation on the static

datasets.

racy for both variants of our method, showing it is worth-

while to model the potential data mismatch between the un-

labeled video and training snapshots. We suspect the PAV

pose descriptors are also playing a role in accounting for the

domain shift, since they abstract away some nuisance fac-

tors that could differ between the two sources (e.g., lighting,

scale).

4.3. Recognizing Activity in Novel Video

Next, we apply our method to predict activities in novel

video, still using the same static image training set idea (see

dataset details in Sec. 4.1). We use a simple voting ap-

proach to predict the label for the entire video. First, we

classify each frame independently, generating a probability

for each possible label 1, . . . , C. Then, we sum the prob-

abilities across all frames to get the final prediction. Note

that this test should allow our method to shine, since the

novel videos will exhibit many intermediate poses that the

original snapshots did not cover—but that our method will



Original Original+synthetic Original+synthetic

example-based manifold-based

Without DA 0.3846 0.5128 0.4872

With DA N/A 0.5382 0.5128

Table 2. Accuracy of video activity recognition on 78 test videos

from HMDB51+ASLAN+UCF data.

(ideally) synthesize. For this experiment, we transform the

domain adapted features using pv′

= [pv,0,0], since the

train, test, and synthetic data are all from different domains.

Table 2 shows the results. We compare our method to

the Original baseline, and also show the impact of domain

adaptation. Our method makes a substantial improvement

in accuracy. Its synthetic padding of the data makes the

training set less sparse, yielding more reliable predictions

on the video frames. Domain adaptation again boosts the

accuracy further.

5. Conclusions

We proposed a framework to augment training data

for activity recognition without additional labeling cost.

Our approach leverages knowledge of human pose patterns

over time, as represented by an unlabeled video repository.

To implement our idea, we explore simple but effective

example- and manifold-based representations of pose dy-

namics, and combine themwith a domain adaptation feature

mapping that can connect the real and generated examples.

Our results classifying activities in three datasets show

that the synthetic poses have significant impact when the

labeled training examples are sparse. We demonstrate the

benefits with a state-of-the-art local pose representation;

however, our idea is not coupled specifically with that

method, and it has potential to boost alternative descriptors

in similar ways. In future work, we plan to investigate ex-

tensions that could account for not only poses, but also the

objects and scenes with which the detected humans interact.
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