Watching Unlabeled Video Helps Learn New Human Actions
from Very Few Labeled Snapshots
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Problems of statlc snapshots
- May have only few training examples for some actions.
- Often limited to “canonical” instances of the action.

Our Idea
Expand snapshots by pose dynamics learned from videos

Recognizing activity in images
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Few canonical snapshots Unlabeled video pool (generic human action) - Videos cover the space of human pose dynamics.

\_ < B No action labels are given.
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- Watch videos to learn how human poses change over time. =3 | Walking -8
- Infer nearby poses to expand the sparse training snapshots.
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Related Work

- Learn actions with discriminative pose and appearance features.
e.g. [Maji et al. 2011, Yang et al. 2010, Yao et al. 2010, Delaitre et al. 2011] R, | - S 0 l . l l .
- Expand training data by mirroring images and videos. i £ L i ‘ 20 SO 40 >0 60 70
e.g. [Papageorgiou et al. 2000, Wang et al. 2009] Tralnlng Image Pose diversity among training images

- Synthesize images for action recognition and pose estimation. Recognizing activity in videos
e.g. [Matikainen et al. 2011, Shakhnarovich et al. 2003, : -Eea:+Synt2eti_0:exarr_}pllz:gaseg
Grauman et al. 2003, Shotton et al. 2011,] 2) Manifold based strategy b e . Training .. Testing eal+synthetic-manifold—base
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- Substantial gains when recognizing actions in

- > video, since our method infers intermediate , _ _
I | o ] o Accuracy of video activity recognition on 78

Training image Focally Linear Embedding poses not covered in original snapshots. testing videos from HMDB51+ASLAN+UCF data.
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Detected poselets 1 PA%V 3 Domain adaptation by [Daume 112007 ®\®/)Gi’29 - Augment training data without additional labeling cost by leveraging unlabeled video.

- Poselet activation vector (PAV) by [Maji et al. 2011] Statl(CtSHanS)hotS p [p 0, p ]
drge T .

- Each poselet captures part of the pose from a given viewpoint S - Significant advantage when labeled training examples are sparse.
Frames from video

- Robust to occlusion and cluttered background (source) p [pvv P’ 0] - Domain adaptation connects real and generated examples.
Pose feature space Pose feature space

- Simple but effective exemplar/manifold extrapolation strategies.
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