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Introduction

Visual category recognition is a vital thread in Computer Vision

Often methods are most reliable when large training sets are
available, but these are expensive to obtain.



Related Work

I Recent work considers various ways to reduce the amount of
supervision required:

I Weakly supervised category learning
[Weber et al. 2000, Fergus et al. 2003]

I Unsupervised category discovery
[Sivic et al. 2005, Quelhas et al. 2005, Grauman & Darrell 2006, Liu & Chen 2006, Dueck & Frey

2007]

I Share features, transfer learning
[Murphy et al. 2003, Fei-Fei et al. 2003, Bart & Ullman 2005]

I Leverage Web image search
[Fergus et al. 2004, 2005, Li et al. 2007, Schroff et al. 2007, Vijayanarasimhan & Grauman 2008]

I Facilitate labeling process with good interfaces:
I LabelMe [Russell et al. 2005]

I Computer games [von Ahn & Dabbish 2004]

I Distributed architectures [Steinbach et al. 2007]



Active Learning

Traditional active learning reduces supervision by obtaining labels
for the most informative or uncertain examples first.

[Mackay 1992, Freund et al. 1997, Tong & Koller 2001, Lindenbaum et

al. 2004, Kapoor et al. 2007 ...]
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Problem
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levels

I Weak labels: informing about presence of an object

I Strong labels: outlines demarking the object

I Stronger labels: informing about labels of parts of
objects
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Problem

I Strong labels provide unambiguous information but require
more manual effort

I Weak labels are ambiguous but require little manual effort

How do we effectively learn from a mixture of strong and weak
labels such that manual effort is reduced?



Approach: Multi-Level Active Visual Learning

I Best use of manual resources may call for combination of
annotations at different levels.

I Choice must balance cost of varying annotations with their
information gain.



Requirements

The approach requires

I a classifier that can deal with annotations at multiple levels

I an active learning criterion to deal with

I Multiple types of annotation queries
I Variable cost associated with different queries



Multiple Instance learning (MIL)

In MIL, training examples are sets (bags) of individual instances

I A positive bag contains at least one positive instance.

I A negative bag contains no positive instances.

I Labels on instances are not known.

I Learn to separate positive bags/instances from negative instances.

We use the SVM based MIL solution of Gartner et al. (2002).



MIL for visual category learning

I Postive instance: Image segment belonging to class

I Negative instance: Image segment not in class

I Positive bag: Image containing class

I Negative bag: Image not containing class

[Zhang et al. (2002), Andrews et al. (2003) ...]
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bags
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Possible Active Learning Strategies

I Disagreement among committee of classifiers
[Freund et al. 1997]

I Margin-based with SVM
[Tong & Koller 2001]

I Maximize expected information gain
[Mackay 1992]

I Decision theoretic
I Selective sampling [Lindenbaum et al. 2004]

I Value of Information [Kapoor et al. 2007]

But all explored in the conventional single level learning
setting



Decision-Theoretic Multi-level Criterion

Each candidate annotation z is associated with a Value of
Information (VOI), defined as the total reduction in cost after
annotation z is added to the labeled set.

VOI (z) = T ( XL,XU )− T

(
XL ∪ z(t),XU r z

)
Current dataset containing

labeled examples XL and

unlabeled examples XU

Dataset after adding z

with true label t to labeled

set XL

T (XL,XU) = Risk(XL) + Risk(XU) +
∑

Xi∈XL

C(Xi )

Estimated risk of misclassifying Cost of obtaining labels for
labeled and unlabeled examples examples in the labeled set
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Decision-Theoretic Multi-level Criterion: Risk

VOI (z) = R(XL) + R(XU) −
(
R

(
XL ∪ z(t)

)
+ R (XU r z)

)
− C(z)

I Labeled set (XL): Consisting of positive bags Xp and
negative instances Xn

R(XL) =
∑

Xi∈Xp

rp(1− p(Xi )) +
∑

xi∈Xn

rnp(xi ),

Misclassification cost Probability of misclassification

I Unlabeled set (XU):
Similar expression for R(XU), except that for unlabeled data
the probability of labels must be estimated based on the
current classifier’s output.
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Decision-Theoretic Multi-level Criterion: Expected Risk

VOI (z) = R(XL) + R(XU)−
(
R

(
XL ∪ z(t)

)
+ R (XU r z)

)
− C(z)

Risk after adding annotation z is not directly computable since z is
unlabeled.
We approximate this using the expected value of the risk:

R(XL ∪ z(t)) + R(XU r z) ≈ E [R(XL ∪ z(t)) + R(XU r z)]

= E

E =
∑
`∈L

(
R(XL ∪ z(`)) + R(XU r z)

)
p(`|z)

L is the set of all possible labels that example z can take.



Decision-Theoretic Multi-level criterion: Expected Risk

VOI (z) = R(XL) + R(XU)−
(
R

(
XL ∪ z(t)

)
+ R (XU r z)

)
− C(z)

I if z is an unlabeled instance or bag: L = {+1,−1}

E =
(
R

(
XL ∪ z(+1)

)
+ R (XU r z)

)
p(z)

+
(
R

(
XL ∪ z(−1)

)
+ R (XU r z)

)
(1− p(z))

I p(z) is obtained using a probabilistic for the SVM desicion
value using a sigmoid function.
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1
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j ∼ p(zj |ak

1 , ...ak
j−1, a

k−1
j+1 , ...ak−1

M )
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Decision-Theoretic Multi-level criterion: Cost

VOI (z) = R(XL) + R(XU)−
(
R

(
XL ∪ z(t)

)
+ R (XU r z)

)
− C(z)

User experiment to determine cost of each type of annotation.
Cost measured in terms of time required to obtain annotation.

Task Time
(secs)

click on all segments containing ’banana’ 10
label a segment 2
label the image 2



Summary of algorithm



Results: SIVAL dataset

SIVAL dataset [Settles et al. 2008]

I 25 different classes

I 1500 images

I Positive instance: segment
containing class
Positive bag: image
containing class
Negative bag: images of all
other classes

I Each segment represented
by color and texture around
20-30 regions per image



Results: SIVAL dataset
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Multi-level active selection performs the best for most classes.
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Results: SIVAL dataset

Cost
Gain over Random (%)

Our Approach [Settles et al.]
10 372 117
20 176 112
50 81 52

Comparison with Settles et al. 2008 on the SIVAL data, as
measured by the average improvement in the AUROC over the
initial model for increasing labeling cost values.



Scenario 2: MIL for learning from keyword searches



Scenario 2: MIL for learning from keyword searches



Results: Google dataset

Google dataset [Fergus et al. 2005]

I 7 different classes

I 500-700 images per class

I Positive instance: image
containing class
Positive bag: set of images
returned by keyword search
for class
Negative bag: images of all
other classes

I Each image represented
using bag of words of SIFT
features on 4 different
keypoints



Results: Google dataset
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Results: Google dataset
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Conclusion

I First framework to actively learn from multi-level annotations.

I Compares different types of annotations using both
information gain and cost of obtaining it.

I Results show that optimally choosing from multiple types of
annotations reduces manual effort to learn accurate models.

I Applies to non-vision scenarios containing multi-level data.
I like document classification (bags: documents, instances:

passages)

Future Work

I Extend to multi-class setting.

I Reduce computational complexity.



MIL-SVM
The MIL problem can be solved using an SVM.

I Given an instance x described in some kernel embedding space as

φ(x), a bag X is described by
φ(X )

|X |
, where φ(X ) =

∑
x∈X

φ(x) and

|X | counts the number of instances in the bag.

I This is the Normalized Set Kernel (NSK) of Gartner et al.

I Setup and solve a standard SVM using the above kernel function for
bags.

minimize: 1
2 ||w ||

2 + C
|X̃n|

∑
x∈X̃n

ξx + C
|Xp|

∑
X∈Xp

ξX

subject to: w φ(x) + b ≤ −1 + ξx , ∀x ∈ X̃n

w φ(X )
|X | + b ≥ +1− ξX , ∀X ∈ Xp

ξx ≥ 0, ξX ≥ 0,



Expected Risk

I Unlabeled set (XU):
Similar expression for R(XU), except that for unlabeled data
the probability of labels must be estimated based on the
current classifier’s output.

R(XU) =
∑

xi∈XU

rp (1− p(xi )) Pr(yi = +1|xi )

+ rn p(xi ) (1− Pr(yi = +1|xi )),

Pr(y = +1|x) ≈ p(x)

Pr(y = +1|x) is the true probability of example x having label
+1. We approximate this as Pr(y = +1|x) ≈ p(x).



Scenario 2: MIL for learning from keyword searches

I Postive instance: Image belonging to class

I Negative instance: Image not in class

I Positive bag: Set of images returned by a keyword search for the class

I Negative bag: Set of images known to not contain the class



Google user experiment

Task Time
(secs)

click on all images containing ’airplane’ 12
label an image 3



Results: SIVAL dataset

Cost
Our Approach [Settles et al.]

Random Multi-level Gain over Random MIU Gain over
Active Random % Active Random%

10 +0.0051 +0.0241 372 +0.023 +0.050 117
20 +0.0130 +0.0360 176 +0.033 +0.070 112
50 +0.0274 +0.0495 81 +0.057 +0.087 52



What gets selected when?
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The cumulative number of labels acquired for each type with
increasing number of queries. Our method tends to request
complete segmentations or image labels early on, followed by
queries on unlabeled segments later on.


