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Introduction

Visual category recognition is a vital thread in Computer Vision
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Often methods are most reliable when large training sets are
available, but these are expensive to obtain.



Related Work

» Recent work considers various ways to reduce the amount of
supervision required:

» Weakly supervised category learning
[Weber et al. 2000, Fergus et al. 2003]

» Unsupervised category discovery
[Sivic et al. 2005, Quelhas et al. 2005, Grauman & Darrell 2006, Liu & Chen 2006, Dueck & Frey
2007]

» Share features, transfer learning
[Murphy et al. 2003, Fei-Fei et al. 2003, Bart & Ullman 2005]

> Leverage Web image search

[Fergus et al. 2004, 2005, Li et al. 2007, Schroff et al. 2007, Vijayanarasimhan & Grauman 2008]

» Facilitate labeling process with good interfaces:
» LabelMe [Russell et al. 2005]
» Computer games [von Ahn & Dabbish 2004]
» Distributed architectures [Steinbach et al. 2007]



Active Learning

Traditional active learning reduces supervision by obtaining labels
for the most informative or uncertain examples first.
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[Mackay 1992, Freund et al. 1997, Tong & Koller 2001, Lindenbaum et
al. 2004, Kapoor et al. 2007 ...]
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Problem

But in visual category learning, annotations can occur at multiple
levels

Less
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» Weak labels: mformlng about presence of an object
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» Strong Iabels outlines demarking the object

» Stronger labels: informing about labels of parts of
J« objects
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Problem

» Strong labels provide unambiguous information but require
more manual effort

» Weak labels are ambiguous but require little manual effort

How do we effectively learn from a mixture of strong and weak
labels such that manual effort is reduced?



Approach: Multi-Level Active Visual Learning
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» Best use of manual resources may call for combination of
annotations at different levels.

» Choice must balance cost of varying annotations with their
information gain.



Requirements

The approach requires

» a classifier that can deal with annotations at multiple levels
» an active learning criterion to deal with

» Multiple types of annotation queries
» Variable cost associated with different queries



Multiple Instance learning (MIL)

In MIL, training examples are sets (bags) of individual instances
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[Dietterich et al. 1997]

» A positive bag contains at least one positive instance.
» A negative bag contains no positive instances.
» Labels on instances are not known.

» Learn to separate positive bags/instances from negative instances.

We use the SVM based MIL solution of Gartner et al. (2002).



MIL for visual category learning
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» Postive instance: Image segment belonging to class
» Negative instance: Image segment not in class

» Positive bag: Image containing class
>

Negative bag: Image not containing class

[Zhang et al. (2002), Andrews et al. (2003) ...]
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Multi-level Active Learning queries

In MIL, an example can be
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Multi-level Active Learning queries

In MIL, an example can be
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» Strongly labeled: Positive/Negative instances and Negative
bags

» Weakly Labeled: Positive bags

» Unlabeled: Unlabeled instances and bags



Multi-level Active Learning queries
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Multi-level Active Learning queries
Labeled

°

o ;s .
Labeled - negative
positive <;0 ® o ®/ instances
instances ° o Y o
Labeled °
positive [
bags ° o
Unlabeleq%

instances

(]
o
W

@ ‘w

Unlabeled
bags

Types of queries active learner can pose

e Label an unlabeled
instance



Multi-level Active Learning queries
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Multi-level Active Learning queries
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Possible Active Learning Strategies

» Disagreement among committee of classifiers
[Freund et al. 1997]

» Margin-based with SVM
[Tong & Koller 2001]

» Maximize expected information gain
[Mackay 1992]

Decision theoretic

v

» Selective Sampling [Lindenbaum et al. 2004]
» Value of Information [kapoor et al. 2007]

But all explored in the conventional single level learning
setting



Decision-Theoretic Multi-level Criterion
Each candidate annotation z is associated with a Value of

Information (VOI), defined as the total reduction in cost after
annotation z is added to the labeled set.
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Decision-Theoretic Multi-level Criterion
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Decision-Theoretic Multi-level Criterion

Simplifying, the Value of Information for annotation z is

VOI(Z) = T(X[_, Xu) - T (XL U Z(t), Xy~ Z)
= R(X)+ R(Xv)
— (R (XL U Z(t)) = R(XU N Z))
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where R stands for Risk.

Risk of misclassifying Risk of misclassifying
examples using examples after adding
current classifier. z to classifier.

Cost of obtaining
annotation for z.



Decision-Theoretic Multi-level Criterion: Risk
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Decision-Theoretic Multi-level Criterion: Risk

VOI(z) = R(X)+ R(Xy) — (R (XL Uz(t)) +R(Xy~ z)) —C(2)

> Labeled set (X} ): Consisting of positive bags X}, and
negative instances X,

R(A) = 3 [p] (L= p(X) + 3 [7a] p()
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’ Misclassification cost ‘ Probability of misclassification

» Unlabeled set (X}):
Similar expression for R(Xy), except that for unlabeled data

the probability of labels must be estimated based on the
current classifier’s output.



Decision-Theoretic Multi-level Criterion: Expected Risk

VOI(z) = R(X.)+R(Xu)— (R(Auz®)+R(Xy\2)) —C(2)

Risk after adding annotation z is not directly computable since z is
unlabeled.
We approximate this using the expected value of the risk:

R UZN+ R(Xy~z) ~ E[R(X Uz®)+ Ry~ 2)]
E

E= Y (R(XL Uz + R(Xy ~ z)) p(l]2)
Lell

L is the set of all possible labels that example z can take.



Decision-Theoretic Multi-level criterion: Expected Risk

VOI(z) = R(X.)+R(Xu)— (R(Auz®)+R(Xy\2)) —C(2)

» if z is an unlabeled instance or bag: L = {+1, -1}

E = (R (XL U z(+1>) FR(Xy~ z)) p(2)

+ (R(AU2Y) +R (X~ 2)) (1 p(2))

» p(z) is obtained using a probabilistic for the SVM desicion
value using a sigmoid function.



Decision-Theoretic Multi-level criterion: Expected Risk
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We compute expected cost using Gibbs sampling:
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Decision-Theoretic Multi-level criterion: Expected Risk

VOI(z) = R(X.)+ R(Xy)— (R(XLUz®) +R(Xu\2) —C(2)

» if z={z1,2,...zy} is a positive bag: L = {+1,-1}"
We compute expected cost using Gibbs sampling:

» Starting with a random sample /* = {a}, a3...a},} we generate
S samples from the joint distribution of the M instances
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» Compute expected value over the generated samples

S
1
E=¢ ;(R (U2 ) 4+ R (Ko~ {21, 22,0 2m)))



Decision-Theoretic Multi-level criterion: Cost

VOI(z) = R(X.)+ R(Xy) — (R (XL U z<f>) +R(Xu~ z)) ~ C(2)

User experiment to determine cost of each type of annotation.
Cost measured in terms of time required to obtain annotation.

Task Time
(secs)

click on all segments containing 'banana’ 10

label a segment 2

label the image 2



Summary of algorithm
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Results: SIVAL dataset

SIVAL dataset [Settles et al. 2008]

Apple

» 25 different classes
» 1500 images

» Positive instance: segment
containing class
Positive bag: image
containing class
Negative bag: images of all
other classes

Banana Bluescrunge
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» Each segment represented
by color and texture around
20-30 regions per image
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Results: SIVAL dataset
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Sample learning curves per class, each averaged over five trials.
Multi-level active selection performs the best for most classes.



Results: SIVAL dataset
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Results: SIVAL dataset

Cost Gain over Random (%)
Our Approach | [Settles et al.]
10 372 117
20 176 112
50 81 52

Comparison with Settles et al. 2008 on the SIVAL data, as
measured by the average improvement in the AUROC over the
initial model for increasing labeling cost values.



Scenario 2: MIL for learning from keyword searches
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Scenario 2: MIL for learning from keyword searches
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Results: Google dataset

Google dataset [Fergus et al. 2005]

> 7 different classes
» 500-700 images per class

» Positive instance: image
containing class
Positive bag: set of images
returned by keyword search
for class
Negative bag: images of all
other classes
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» Each image represented
using bag of words of SIFT
features on 4 different
keypoints

Wristwatch



Results: Google dataset

Category - cars rear

Category - guitar

Category — motorbike
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Learning curves for all categories in the Google dataset for the four

methods.



Results: Google dataset
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Summary of the average improvement over all categories at a cost
of 20 units.



Conclusion

» First framework to actively learn from multi-level annotations.

» Compares different types of annotations using both
information gain and cost of obtaining it.

» Results show that optimally choosing from multiple types of
annotations reduces manual effort to learn accurate models.
» Applies to non-vision scenarios containing multi-level data.

> like document classification (bags: documents, instances:
passages)

Future Work

» Extend to multi-class setting.

» Reduce computational complexity.



MIL-SVM
The MIL problem can be solved using an SVM.

» Given an instance x described in some kernel embedding space as

X
¢(x), a bag X is described by ¢()<|) where ¢(X E ¢(x) and
xeX

|X| counts the number of instances in the bag.
» This is the Normalized Set Kernel (NSK) of Gartner et al.

» Setup and solve a standard SVM using the above kernel function for
bags.

minimize:  3||w||*> + |7Cn\ Doved, &t ﬁ > xex, x
subject to: w d(x)+b< —1+¢&,, Vx € X,
wid +b> 41—k, VX eX,

fx Z 0,§X Z 0;



Expected Risk

» Unlabeled set (X}):
Similar expression for R(Xy), except that for unlabeled data
the probability of labels must be estimated based on the
current classifier’s output.

R(Xy) = > [7o] (1 = p(xi) Pr(yi = +11)

xXi€Xy
+ p(xi) (1 = Pr(y; = +1]x;)),
Priy =+1x) =~ p(x)

Pr(y = +1|x) is the true probability of example x having label
+1. We approximate this as Pr(y = +1|x) = p(x).



Scenario 2: MIL for learning from keyword searches
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positive
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visage

Postive instance: Image belonging to class
Negative instance: Image not in class
Positive bag: Set of images returned by a keyword search for the class

Negative bag: Set of images known to not contain the class



Google user experiment

Task Time
(secs)

click on all images containing "airplane’ 12

label an image | 3




Results: SIVAL dataset

Cost Our Approach [Settles et al.]
Random Multi-level  Gain over | Random MIU Gain over
Active Random % Active  Random%
10 | +0.0051  +0.0241 372 +0.023  40.050 117
20 +0.0130  +0.0360 176 +0.033  +40.070 112
50 +0.0274  +0.0495 81 +0.057 +40.087 52




What gets selected when?

SIVAL dataset
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The cumulative number of labels acquired for each type with
increasing number of queries. Our method tends to request
complete segmentations or image labels early on, followed by
queries on unlabeled segments later on.



