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Abstract

We consider the problem of retrieving the database points nearest to a givenhyper-
planequery without exhaustively scanning the database. We propose two hashing-
based solutions. Our first approach maps the data to two-bit binary keys that
are locality-sensitive for the angle between the hyperplane normal and a database
point. Our second approach embeds the data into a vector space where the Eu-
clidean norm reflects the desired distance between the original points and hyper-
plane query. Both use hashing to retrieve near points in sub-linear time. Our
first method’s preprocessing stage is more efficient, while the second has stronger
accuracy guarantees. We apply both to pool-based active learning: taking the
current hyperplane classifier as a query, our algorithm identifies those points (ap-
proximately) satisfying the well-known minimal distance-to-hyperplane selection
criterion. We empirically demonstrate our methods’ tradeoffs, and show that they
make it practical to perform active selection with millionsof unlabeled points.

1 Introduction

Efficient similarity search with large databases is centralto many applications of interest, such as
example-based learning algorithms, content-based image or audio retrieval, and quantization-based
data compression. Often the search problem is considered inthe domain ofpoint data: given a
database of vectors listing some attributes of the data objects, which are nearest to a novel query
vector? Existing algorithms provide efficient data structures for point-to-point retrieval tasks with
various useful distance functions, producing either exactor approximate near neighbors while for-
going a brute force scan through all database items, e.g., [1, 2, 3, 4, 5, 6, 7].

By comparison, much less work considers how to efficiently handle instances more complex than
points. In particular, no previous work addresses thehyperplane-to-pointsearch problem: given
a database of points, which are nearest to a novel query hyperplane? This problem is critical to
pool-based active learning, where the goal is to request labels for those points that appear most
informative. The widely used margin-based selection criterion of [8, 9, 10] seeks those points that are
nearest to the current support vector machine’s hyperplanedecision boundary, and can substantially
reduce total human annotation effort. However, for large-scale active learning, it is impractical to
exhaustively apply the classifier to all unlabeled points ateach round of learning; to exploit massive
unlabeled pools, a fast (sub-linear time) hyperplane search method is needed.
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To this end, we propose two solutions for approximate hyperplane-to-point search. For each, we
introduce randomized hash functions that offer query timessub-linear in the size of the database, and
provide bounds for the approximation error of the neighborsretrieved. Our first approach devises
a two-bit hash function that is locality-sensitive for the angle between the hyperplane normal and a
database point. Our second approach embeds the inputs such that the Euclidean distance reflects the
hyperplane distance, thereby making them searchable with existing vector-data approximate nearest
neighbor algorithms. While the preprocessing in our first method is more efficient, our second
method has stronger accuracy guarantees.

We demonstrate our algorithms’ significant practical impact for large-scale active learning with
SVM classifiers. Our results show that our method helps scale-up active learning for realistic prob-
lems with massive unlabeled pools on the order of millions ofexamples.

2 Related Work

We briefly review related work on approximate similarity search, subspace search methods, and
pool-based active learning.

Approximate near-neighbor search.For low-dimensional points, spatial decomposition and tree-
based search algorithms can provide the exact neighbors in sub-linear time [1, 2]. While such
methods break down for high-dimensional data, a number ofapproximatenear neighbor methods
have been proposed that work well with high-dimensional inputs. Locality-sensitive hashing (LSH)
methods devise randomized hash functions that map similar points to the same hash buckets, so that
only a subset of the database must be searched after hashing anovel query [3, 4, 5]. A related family
of methods design Hamming space embeddings that can be indexed efficiently (e.g., [11, 12, 6]).
However, in contrast to our approach, all such techniques are intended for vector/point data.

A few researchers have recently examined approximate search tasks involving subspaces. In [13],
a Euclidean embedding is developed such that the norm in the embedding space directly reflects
the principal angle-based distance between the original subspaces. After this mapping, one can
apply existing approximate near-neighbor methods designed for points (e.g., LSH). We provide a
related embedding to find the points nearest to the hyperplane; however, in contrast to [13], we
provide LSH bounds, and our embedding is more compact due to our proposed sampling strategy.
Another method to find the nearest subspace for a point query is given in [14], though it is limited
to relatively low-dimensional data due to its preprocessing time/space requirement ofO(Nd2 log N )
and query time ofO(d10 log N). Further, unlike [13], that approach is restricted to pointqueries.
Finally, a sub-linear time method to map aline query to its nearest points is derived in [15]. In
contrast to all the above work, we propose specialized methods for the hyperplane search problem,
and show that they handle high-dimensional data and large databases very efficiently.

Margin-based active learning.Existing active classifier learning methods forpool-basedselection
generally scan all database instances before selecting which to have labeled next.1 One well-known
and effective active selection criterion for support vector machines (SVMs) is to choose points that
are nearest to the current separating hyperplane [8, 9, 10].While simple, this criterion is intuitive,
has theoretical basis in terms of rapidly reducing the version space [8], and thus is widely used
in practice (e.g., [17, 18, 19]). Unfortunately, even for inexpensive selection functions, very large
unlabeled datasets make the cost of exhaustively searchingthe pool impractical. Researchers have
previously attempted to cope with this issue by clustering or randomly downsampling the pool [19,
20, 21, 22]; however, such strategies provide no guaranteesas to the potential loss in active selection
quality. In contrast, when applying our approach for this task, we can consider orders of magnitude
fewer points when making the next active label request, yet guarantee selections within a known
error of the traditional exhaustive pool-based technique.

Other forms of approximate SVM training. To avoid potential confusion, we note that our prob-
lem setting differs from both that considered in [23], wherecomputational geometry insights are
combined with the QP formulation for more efficient “core vector” SVM training, as well as that
considered in [19], where a subset oflabeleddata points are selected for online LASVM training.

1We consider only a specific hyperplane criterion in this paper; see [16] for an active learning survey.
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3 Approach

We consider the following retrieval problem. Given a databaseD = [x1, . . . ,xN ] of N points in
R

d, the goal is to retrieve the points from the database that areclosest to a givenhyperplanequery
whose normal is given byw ∈ R

d. We call this thenearest neighbor to a query hyperplane(NNQH)
problem. Without loss of generality, we assume that the hyperplane passes through origin, and that
eachxi, w is unit norm. We see in later sections that these assumptionsdo not affect our solution.

The Euclidean distance of a pointx to a given hyperplanehw parameterized by normalw is:

d(hw,x) = ‖(xT w)w‖ = |xT w|. (1)

Thus, the goal for the NNQH problem is to identify those pointsxi ∈ D that minimize|xT
i w|. Note

that this is in contrast to traditional proximity problems,e.g., nearest or farthest neighbor retrieval,
where the goal is tomaximizexT w or −xT w, respectively. Hence, existing approaches are not
directly applicable to this problem.

We formulate two algorithms for NNQH. Our first approach mapsthe data to binary keys that are
locality-sensitive for the angle between the hyperplane normal and a database point, thereby per-
mitting sub-linear time retrieval with hashing. Our secondapproach computes a sparse Euclidean
embedding for the query hyperplane that maps the desired search task to one handled well by exist-
ing approximate nearest-point methods.

In the following, we first provide necessary background on locality-sensitive hashing (LSH). The
subsequent two sections describe each approach in turn, andSec. 3.4 reviews their trade-offs. Fi-
nally, in Sec. 3.5, we explain how either method can be applied to large-scale active learning.

3.1 Background: Locality-Sensitive Hashing (LSH)

Informally, LSH [3] requires randomized hash functions guaranteeing that the probability of colli-
sion between two vectors is inversely proportional to their“distance”, where “distance” is defined
according to the task at hand. Since similar points are assured (w.h.p.) to fall into the same hash
bucket, one need only search those database items with whicha novel query collides in the hash
table.

Formally, letd(·, ·) be a distance function over items from a setS, and for any itemp ∈ S, let
B(p, r) denote the set of examples fromS within radiusr from p.

Definition 3.1. [3] Let hH denote a random choice of a hash function from the familyH. The family
H is called(r, r(1 + ǫ), p1, p2)−sensitive ford(·, ·) when, for anyq, p ∈ S,

• if p ∈ B(q, r) thenPr[hH(q) = hH(p)] ≥ p1,

• if p /∈ B(q, r(1 + ǫ)) thenPr[hH(q) = hH(p)] ≤ p2.

For a family of functions to be useful, it must satisfyp1 > p2. A k-bit LSH function com-
putes a hash “key” by concatenating the bits returned by a random sampling ofH: g(p) =
[

h
(1)
H

(p), h
(2)
H

(p), . . . , h
(k)
H

(p)
]

. Note that the probability of collision for close points is thus at least

pk
1 , while for dissimilar points it is at mostpk

2 . During a preprocessing stage, all database points are
mapped to a series ofl hash tables indexed by independently constructedg1, . . . , gl, where eachgi

is ak-bit function. Then, given a queryq, an exhaustive search is carried out only on those examples
in the union of thel buckets to whichq hashes. These candidates contain the(r, ǫ)-nearest neighbors
(NN) for q, meaning ifq has a neighbor within radiusr, then with high probability some example
within radiusr(1 + ǫ) is found.

In [3] an LSH scheme using projections onto single coordinates is shown to be locality-sensitive for
the Hamming distance over vectors. For that hash function,ρ = log p1

log p2
≤ 1

1+ǫ
, and usingl = Nρ

hash tables, a(1+ǫ)-approximate solution can be retrieved in timeO(N
1

(1+ǫ) ). Related formulations
and LSH functions for other distances have been explored (e.g., [5, 4, 24]). Our contribution is to
define two locality-sensitive hash functions for the NNQH problem.
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3.2 Hyperplane Hashing based on Angle Distance (H-Hash)

Recall that we want to retrieve the database vector(s)x for which |wT x| is minimized. If the
vectors are unit norm, then this means that for the “good” (close) database vectors,w andx are
almost perpendicular. Letθx,w denote the angle betweenx andw. We define the distanced(·, ·) in
Definition 3.1 to reflect how far from perpendicularw andx are:

dθ(x,w) = (θx,w − π/2)2. (2)

Consider the following two-bit function that maps two inputvectorsa, b ∈ ℜd to {0, 1}2:

hu,v(a, b) = [hu(a), hv(b)] = [sign(uT a), sign(vT b)], (3)

where sign(uT a) returns1 if uT a ≥ 0, and 0 otherwise, andu andv are sampled independently
from a standardd-dimensional Gaussian, i.e.,u, v ∼ N (0, I).

We define ourhyperplane hash(H-Hash) function familyH as:

hH(z) =

{

hu,v(z,z), if z is a database point vector,
hu,v(z,−z), if z is a query hyperplane vector.

Next, we prove that this family of hash functions is locality-sensitive (Definition 3.1).

Claim 3.2. The familyH is
(

r, r(1 + ǫ), 1
4 − 1

π2 r, 1
4 − 1

π2 r(1 + ǫ)
)

-sensitive for the distance
dθ(·, ·), wherer, ǫ > 0.

Proof. Since the vectorsu, v used by hash functionhu,v are sampled independently, then for a
query hyperplane vectorw and a database point vectorx,

Pr[hH(w) = hH(x)] = Pr[hu(w) = hu(x) andhv(−w) = hv(x)],

= Pr[hu(w) = hu(x)] Pr[hv(−w) = hv(x)]. (4)

Next, we use the following fact proven in [25],

Pr[sign(uT a) = sign(uT c)] = 1 − θa,c

π
, (5)

whereu is sampled as defined above, andθa,c denotes the angle between the two vectorsa andc.

Using (4) and (5), we get:

Pr[hH(w) = hH(x)] =
θx,w

π

(

1 − θx,w

π

)

=
1

4
− 1

π2

(

θx,w − π

2

)2

.

Hence, when
(

θx,w − π
2

)2 ≤ r, Pr[hH(w) = hH(x)] ≥ 1
4 − r

π2 = p1. Similarly, for anyǫ > 0

such that
(

θx,w − π
2

)2 ≥ r(1 + ǫ), Pr[hH(w) = hH(x)] ≤ 1
4 − r(1+ǫ)

π2 = p2.

We stress that unlike traditional LSH functions, ours are asymmetric. That is, to hash a database
point x we usehu,v(x,x), whereas to hash a query hyperplanew, we usehu,v(w,−w). The
purpose of the two-bit hash is to constrain the angle with respect to bothw and−w, so that we do
not simply retrieve examples for which we know only thatx is π/2 or lessaway fromw.

With these functions in hand, we can now form hash keys by concatenatingk two-bit pairs fromk
hash functions fromH, store the database points in the hash tables, and query witha novel hyper-
plane to retrieve its closest points (see Sec. 3.1).

The approximation guarantees and correctness of this scheme can be obtained by adapting the proof
of Theorem 1 in [3] (see supplementary file). In particular, we can show that with high probability,
our LSH scheme will return a point within a distance(1 + ǫ)r, wherer = mini dθ(xi,w), in time
O(Nρ), whereρ = log p1

log p2
. As p1 > p2, we haveρ < 1, i.e., the approach takes sub-linear time

for all values ofr, ǫ. Furthermore, asp1 = 1
4 − r

π2 , andp2 = 1
4 − r(1+ǫ)

π2 , ρ can also be bounded

asρ ≤ 1−log(1− 4r

π2 )

1+ ǫ

1+ π2
4r

log 4

. Note that this bound forρ is dependent onr, and is more efficient for larger

values ofr. See the supplementary material for more discussion on the bound.
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3.3 Embedded Hyperplane Hashing based on Euclidean Distance (EH-Hash)

Our second approach for the NNQH problem relies on a Euclidean embedding for the hyperplane
and points. It offers stronger bounds than the above, but at the expense of more preprocessing.

Given ad-dimensional vectora, we compute an embedding inspired by [13] that yields ad2-
dimensional vector by vectorizing the corresponding rank-1 matrixaaT :

V (a) = vec(aaT ) =
[

a2
1, a1a2, . . . , a1ad, a2

2, a2a3, . . . , a2
d

]

, (6)

whereai denotes thei-th element ofa. Assuminga andb to be unit vectors, the Euclidean distance
between the embeddingsV (a) and−V (b) is given by ||V (a) − (−V (b))||2 = 2 + 2(aT b)2.
Hence, minimizing the distance between the two embeddings is equivalent to minimizing|aT b|,
our intended function.

Given this, we define ourembedding-hyperplane hash(EH-Hash) function familyE as:

hE(z) =

{

hu (V (z)) , if z is a database point vector,
hu (−V (z)) , if z is a query hyperplane vector,

wherehu(z) = sign(uT z) is a one-bit hash function parameterized byu ∼ N (0, I).
Claim 3.3. The family of functions E defined above is
(

r, r(1 + ǫ), 1
π

cos−1 sin2(
√

r), 1
π

cos−1 sin2(
√

r(1 + ǫ))
)

-sensitive fordθ(·, ·), wherer, ǫ > 0.

Proof. Using the result of [25], for any vectorw,x ∈ R
d,

Pr
[

sign
(

uT (−V (w))
)

= sign
(

uT V (x)
)]

= 1 − 1

π
cos−1

( −V (w)T V (x)

‖V (w)‖ ‖V (x)‖

)

(7)

whereu ∈ R
d2

is sampled from a standardd2-variate Gaussian distribution,u ∼ N (0, I). Note
that for any unit vectorsa, b ∈ R

d2

, V (a)T V (b) = Tr(aaT bbT ) = (aT b)2 = cos2 θa,b.

Using (7) together with the definition ofhE above, given a hyperplane queryw and database point
x we have:

Pr[hE(w) = hE(x)] = 1 − 1

π
cos−1

(

− cos2(θx,w)
)

= cos−1
(

cos2(θx,w)
)

/π (8)

Hence, when(θx,w − π
2 )2 ≤ r,

Pr[hE(w) = hE(x)] ≥ 1

π
cos−1 sin2(

√
r) = p1, (9)

andp2 is obtained similarly.

We observe that thisp1 behaves similarly to2( 1
4 − r

π2 ). That is, asr varies, EH-Hash’sp1 returns
values close to twice those returned by H-Hash’sp1 (see plot illustrating this in supplementary file).
Hence, the factorρ = log p1

log p2
improves upon that of the previous section, remaining lowerfor lower

values ofǫ, and leading to better approximation guarantees. See supplementary material for a more
detailed comparison of the two bounds.

On the other hand, EH-Hash’s hash functions are significantly more expensive to compute. Specif-
ically, it requiresO(d2) time, whereas H-Hash requires onlyO(d). To alleviate this problem, we
use a form of randomized sampling when computing the hash bits for a query that reduces the time
to O(1/ǫ′

2
), for ǫ′ > 0. Our method relies on the following lemma, which states thatsampling a

vectorv according to the weights of each element leads to good approximation tovT y for any vec-
tor y (with constant probability). Similar sampling schemes have been used for a variety of matrix
approximation problems (see [26]).
Lemma 3.4. Letv ∈ R

d and definepi = v2
i /‖v‖2. Constructṽ ∈ R

d such that thei-th element is
vi with probabilitypi and is0 otherwise. Selectt such elements using sampling with replacement.
Then, for anyy ∈ R

d, ǫ > 0, c ≥ 1, t ≥ c
ǫ′2

,

Pr[|ṽT y − vT y| ≤ ǫ′‖v‖2‖y‖2] > 1 − 1

c
. (10)
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We defer the proof to the supplementary material. The lemma implies that at query time our hash
functionhE(w) can be computed while incurring a small additive error in timeO( 1

ǫ′2
), by sampling

its embeddingV (w) accordingly, and then cycling through only the non-zero indices ofV (w) to
computeuT (−V (w)). Note that we can substantially reduce the error in the hash function compu-
tation by samplingO( 1

ǫ′2
) elements of the vectorw and then using vec(ww̃T ) as the embedding

for w. However, in this case, the computational requirements increase toO( d
ǫ′2

).

While one could alternatively use the Johnson-Lindenstrauss (JL) lemma to reduce the dimension-
ality of the embedding with random projections, doing so hastwo major difficulties: first, thed − 1
dimensionality of a subspace represented by a hyperplane implies the random projection dimension-
ality must still be large for the JL-lemma to hold, and second, the projection dimension is dependent
on the sum of the number of database pointsandquery hyperplanes. The latter is problematic when
fielding an arbitrary number of queries over time or storing agrowing database of points—both prop-
erties that are intrinsic to our target active learning application. In contrast, our sampling method is
instance-dependent and incurs very little overhead for computing the hash function.

Comparison to [13]. Basri et al. define embeddings for finding nearest subspaces [13]. In particular,
they define Euclidean embeddings for affine subspace queriesand database points which could be
used for NNQH, although they do not specifically apply it to hyperplane-to-point search in their
work. Also, their embedding is not tied to LSH bounds in termsof the distance function (2), as we
have shown above. Finally, our proposed instance-specific sampling strategy offers a more compact
representation with the advantages discussed above.

3.4 Recap of the Hashing Approaches

To summarize, we presented two locality-sensitive hashingapproaches for the NNQH problem. Our
first H-Hash approach defines locality-sensitivity in the context of NNHQ, and then provides suit-
able two-bit hash functions together with a bound on retrieval time. Our second EH-Hash approach
consists of ad2-dimensional Euclidean embedding for vectors of dimensiond that in turn reduces
NNHQ to the Euclidean space nearest neighbor problem, for which efficient search structures (in-
cluding LSH) are available. While EH-Hash has better bounds than H-Hash, its hash functions are
more expensive. To mitigate the expense for high-dimensional data, we use a well-justified heuristic
where we randomly sample the given query embedding, reducing the query time to linear ind.

Note that both of our approaches attempt to minimizedθ(w,x) between the retrievedx and the
hyperplanew. Since that distance is only dependent on theanglebetweenx andw, any scaling of
the vectors do not effect our methods, and we can safely treatthe provided vectors to be unit norm.

3.5 Application to Large-Scale Active Learning

The search algorithms introduced above can be applied for any task fitting their query/database
specifications. We are especially interested in their relevance for making active learning scalable.

A practical paradox with pool-based active learning algorithms is that their intended value—to re-
duce learning time by choosing informative examples to label first—conflicts with the real expense
of applying them to very large “unprepared” unlabeled datasets. Generally methods today are tested
in somewhat canned scenarios: the implementor has a moderately sized labeled dataset, and simply
withholds the labels from the learner until a given point is selected, at which point the “oracle” re-
veals the label. In reality, one would like to deploy an active learner on a massivetruly unlabeled
data pool (e.g., all documents on the Web) and let it crawl forthe instances that appear most valuable
for the target classification task. The problem is that a scanof millions of points is rather expensive
to compute exhaustively, and thus defeats the purpose of improving overall learning efficiency.

Our algorithms make it possible to benefit fromboth massive unlabeled collections as well as
actively chosen label requests. We consider the “simple margin” selection criterion for linear
SVM classifiers [8, 9, 10]. Given a hyperplane classifier and an unlabeled pool of vector data
U = {x1, . . . ,xN}, the point that minimizes the distance to the current decision boundary is se-
lected for labeling:x∗ = argminxi∈U |wT xi|. Our two NNQH solutions supply exactly the hash
functions needed to rapidly identify the next point to label: first we hash the unlabeled database into
tables, and then at each active learning loop, we hash the current classifierw as a query.2

2The SVM bias term is handled by appending points with a1. Note, our approach assumes linear kernels.
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Figure 1: Newsgroups results. (a)Improvements in prediction accuracy relative to the initial classifier,
averaged across all 20 categories and runs.(b) Time required to perform selection.(c) Value of |wT x| for
the selected examples. Lower is better. Both of our approximate methods (H-Hash and EH-Hash) significantly
outperform the passive baseline; they are nearly as accurate as idealexhaustive active selection, yet require 1-2
orders of magnitude less time to select an example. (Best viewed in color.)
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Figure 2:CIFAR-10 results. (a)-(c)Example learning curves.(d)-(f) Plotted as in above figure. Our methods
compare very well with the significantly more expensive exhaustive baseline. Our EH-Hash provides more
accurate selection than our H-Hash, though requires noticeably more query time.

4 Results

We demonstrate our approach applied to large-scale active learning tasks. We compare our methods
(H-Hash in Sec. 3.2 and EH-Hash in Sec. 3.3) to two baselines:1) passive learning, where the next
label request is randomly selected, and 2) exhaustive active selection, where the margin criterion
in (1) is computed over all unlabeled examples in order to findthe true minimum. The main goal
is to show our algorithms can retrieve examples nearly as well as the exhaustive approach, but with
substantially greater efficiency.

Datasets and implementation details.We use three publicly available datasets.20 Newsgroups
consists of 20,000 documents from 20 newsgroup categories.We use the provided 61,118-d bag-of-
words features, and a test set of 7,505.CIFAR-10 [27] consists of 60,000 images from 10 categories.
It is a manually labeled subset of the 80 Million Tiny Image dataset [28], which was formed by
searching the Web for all English nouns and lacks ground truth labels. We use the provided train and
test splits of 50K and 10K images, respectively.Tiny-1M consists of the first 1,000,000 (unlabeled)
images from [28]. For both CIFAR-10 and Tiny-1M, we use the provided 384-d GIST descriptors as
features. For all datasets, we train a linear SVM in the one-vs-all setting using a randomly selected
labeled set (5 examples per class), and then run active selection for 300 iterations. We average results
across five such runs. We fixk = 300, Nρ = 500, ǫ′ = 0.01.
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Figure 4: Tiny-1M results. (a) Error of examples selected.(b) Time required. (c) Examples selected by
EH-Hash among 1M candidates in the first 10 iterations when learning the Airplane and Automobile classes.

Newsgroups documents results.Figure 1 shows the results on the 20 Newsgroups, starting with
the learning curves for all four approaches (a). The active learners (exact and approximate) have the
steepest curves, indicating that they are learning more effectively from the chosen labels compared
to the random baseline. Both of our hashing methods perform similarly to the exhaustive selection,
yet require scanning an order of magnitude fewer examples (b). Note, Random requires∼ 0 time.
Fig. 1(c) shows the actual values of|wT x| for the selected examples over all iterations, categories,
and runs; in line with our methods’ guarantees, they select points close to those found with ex-
haustive search. We also observe the expected trade-off: H-Hash is more efficient, while EH-Hash
provides better results (only slightly better for this smaller dataset).

CIFAR-10 tiny image results. Figures 2(d)-(f) show the same set of results on the CIFAR-10, and
(a)-(c) show representative per-class curves (including afailure case (c)). The trends are mostly
similar to the above, although the learning task is more difficult on this data, narrowing the margin
between active and random. Averaged over all classes, we happen to outperform exhaustive selection
(d); this can happen since there is no guarantee that the bestactive choice will help test accuracy, and
it also reflects the wider variation across per-class results. The boxplots in (f) more directly show
the hashing methods are behaving as expected, and (e) and (f)illustrate their trade-offs: EH-Hash
has stronger guarantees than H-Hash (and thus retrieves lowerwT x values), but is more expensive.
Figure 3 shows example image selection results; both exhaustive search and our hashing methods
manage to choose images useful for learning about airplanes/non-airplanes.

Tiny-1M results. Finally, to demonstrate the practical capability of our hyperplane hashing ap-
proach, we perform active selection on the one million tiny image set. We initialize the classifier
with 50 examples from CIFAR-10. The 1M set lacks any labels, making this a “live” test of active
learning (we ourselves annotated whatever the methods selected). We use our EH-Hash method,
since it offers stronger performance.

Even on this massive collection, our method’s selections are very similar in quality to the exhaustive
method Fig. 4(a), yet while taking orders of magnitude less time (b). The images (c) show the
selections made from this large pool during the “live” labeling test; among all one million unlabeled
examples (nearly all of which likely belong to one of the other 1000s ofclasses) our method retrieves
seemingly relevant instances. To our knowledge, this dataset exceeds any previous active selection
results in the literature in terms of the scale of the unlabeled pool.

Conclusions. We introduced two methods for the NNQH search problem. Both permit efficient
large-scale search for points near to a hyperplane, and experiments with three datasets clearly
demonstrate the practical value for active learning with massive unlabeled pools.
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