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Problem Assembling ensemble models Results

Unsupervised category discovery in multi-object images is directly Clusters may contain partial objects, or heterogeneous instances of objects in similar contexts. Datasets: MSRC-v2 (21 classes, 591 imgs), MSRC-v0 (21 classes, 3457 imgs).
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Bottom-up methods cannot always produce object-like segments,
even with multiple-segmentations.
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i Collective graph-cut segment refinement

A problem for discovery, since the system will never have the Given discovered ensemble models. take each initial
chance to detect recurring objects that do not have good segments. “seed” region and refine its segmentation.
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Energy function to minimize:
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Define a graph over image’s superpixels
Energy minimization = image segmentation
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Collect-Cut  Best Bottom-up
Unlabeled Images (ours) (with multi-segs)

high cost when a superpixel is labeled as background high cost when a superpixel is labeled as object By leveraging the shared structure in the collection of images, our method produces
but has low distance to the ensemble model but has low distance to the image’s background significantly better segmentations than either baseline.

d(ps, Mpg(1)) = x> (pi, s1+), where Fully Unsupervised: no previously learned category models. Use LDA [Russell et
- al., 2006], prefer more distant regions to be background.

* Discover shared top-down cues from a collection of unlabeled
multi-object images, and use them to refine both the segments
and discovered objects. . 2
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ReC a | (a) Semi-supervised via familiar-object context (b) Fully Unsupervised
// Ensemble Model: Discovered Top-down Cues Background and Smoothness Cues
; Spatial extent of refined regions more closely matches true objects, allowing more

complete app. features to be extracted per region, leading to better groupings.
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Group regions with similar appearance and object-level context. : TS segmentations and category-level groupings.
Clusters will be more inclusive of intra-class appearance variations. —r Initial Seed Region  Optionally introduce knowledge about previously learned categories.
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e LES N 'ﬁ  Discover shared structure in unlabeled set of images to refine the object-level




