






(a) Easy Instances (b) Hard Instances

Figure 3. Randomly selected examples among the easiest and

hardest instances chosen by our algorithm. Our method is able

to bypass the hard or noisy instances, and focus on the easiest

ones first. Note that a region with high objectness can yield low

easiness if its context is yet unfamiliar (e.g., see red boxes in (b)).

age of their familiarity scores:

CA(w, Ct) =

R
∑

j=1

wjF
(

sj(w), Ct
)

(4)

where wj = R− j + 1 serves to give regions nearest to the

window the most influence. Before combining the compo-

nent Obj(·) and CA(·) terms, we rescale by mapping their

distributions to standard Gaussians.

We sort all unclustered instances in decreasing order of

easiness (Eqn. 2); see Fig. 3 for examples. Then, we per-

form discovery on only the easiest instances, as determined

by a threshold computed from the data: θt = 2σ − 0.1t,
where σ denotes the standard deviation of all easiness

scores in U and t is the iteration of discovery. Since ES(·)
has a standard Gaussian distribution, larger portions of its

right tail are considered to be “easy” over the iterations.

3.4. Single Prominent Category Discovery

Thus far we have a way to model familiar discovered ob-

jects and to identify the easiest instances. Now we overview

how we represent each easy instance, and then how we ex-

tract a single prominent cluster among them.

Representation for each instance: Given a candidate

easy window w ∈ U at iteration t, we form an appearance

A(w) and context Gt(w) descriptor. We use standard de-

scriptors for appearance (e.g., pHOG; see Sec. 4), and a

variant of the object-graph [11] for context. The object-

graph pools the familiar category likelihoods for the win-

dow’s spatially nearest superpixels, recording the values ac-

cording to their relative layout. The resulting descriptor is a

series of histograms:

Gt(w) = [H1(w), . . . , HR(w)] , (5)

where for i = 1, . . . , R each component histogram

Hi(w) = [

i
∑

j=1

P (sja(w)| c1), . . . ,

i
∑

j=1

P (sja(w)| cNt
)

i
∑

j=1

P (sjb(w)| c1), . . . ,

i
∑

j=1

P (sjb(w)| cNt
)].
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Figure 4. (left) The object-graph descriptor [11] for window w at

iteration t. Each histogram Hi(w) accumulates the likelihoods for

the Nt familiar classes (c1, . . . , ct) over the nearest i superpixels,

up to i = R. (right) The descriptor at iteration t+ 1. Note how it

has expanded to reflect the most recent discovered category: ct+1.

accumulates the likelihoods for the Nt familiar classes over

the nearest i superpixels, where sja(w) denotes the j-th

nearest superpixel above the window w, and sjb(w) denotes

the j-th nearest one below it. Nearness is determined based

on region centroids. (See Fig. 4.)

To compute the similarity between two windows wi and

wj , we use the combined kernel:

K(wi, wj) = Kχ2 (A(wi), A(wj)) +Kχ2 (Gt(wi), Gt(wj)) ,
(6)

where Kχ2 denotes a χ2 kernel. Under this kernel, easy

instances with both similar appearance and context are most

likely to be grouped together.

Prominent category discovery: Given the current easy

windows and the combined kernel, at each iteration we

want to expand the pool of discovered categories with a sin-

gle prominent cluster. Recall, the easiest instances already

serve to focus the algorithm on those regions with consis-

tent representations. In particular, our context-awareness

criterion is directly linked to the data representation dur-

ing clustering: the easiest instances are surrounded by fa-

miliar regions with relatively high likelihoods (see Eqns. 3

and 4), which makes comparisons between their object-

graphs meaningful. Thus, by seeking a single new cluster,

we can conservatively identify the most obvious new group;

further, we can incrementally refine the context model most

quickly for future discoveries.

To discover the most prominent category, we first par-

tition the data into candidate groups, and then refine the

most distinctive one. Specifically, we perform complete-

link agglomerative clustering over the easy instances us-

ing the kernel in Eqn. 6, which offers robustness to out-

liers (i.e., windows that are poorly localized or contain rare

objects) and allows us to target a cluster size rather than

a cluster number. We stop merging when the distance be-

tween the most similar (yet-unclustered) instances becomes

too large—specifically, greater than one standard deviation

beyond the mean distance between all instances—and au-
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Figure 5. Discovered category knowledge expansion. See Sec 3.5.

tomatically select the tightest cluster with the highest sil-

houette coefficient [21] among the candidate groups. We

then refine the selected instances with Single-Cluster Spec-

tral Graph Partitioning (SCSGP) [17, 16], which maximizes

the average consensus. This step reduces possible outliers

in the discovered group from agglomerative clustering.

We found this procedure to perform much better in prac-

tice than simply directly applying a “single-cluster” algo-

rithm (e.g., Min Cut or SCSGP alone). This is likely due to

the latter’s sensitivity to a small number of outlying points,

and the presence of overlapping clusters.

3.5. Discovered Category Knowledge Expansion

Each newfound discovery—a single prominent cluster

identified among the easiest instances—serves to benefit

later discoveries; this is a key property of our self-paced

curriculum learning approach. In particular, it helps at both

the intra-category and inter-category levels, as we explain

next.

Intra-category model expansion: First, the initially

discovered easier instances yield a model that can be used to

detect the harder instances, which would not have clustered

well due to their appearance or different context. We use in-

stances in the newly discovered category to train a one-class

SVM based on their appearance representation (no context).

Then, we apply the classifier to all remaining windows in U ,

merge the positively classified instances with the discovered

category, and move them to D.

While object-level context helps the discovery algorithm

group the easier instances, we intentionally exclude context

from the classifier’s feature space for this stage. The goal is

to be more inclusive and identify the harder instances of the

class. For example, we might first discover cows in grass as

the easy case, and then use the corresponding cow model to

find other more challenging instances of cows that are par-

tially occluded or surrounded by other animals (see Fig. 5,

left; darker dots denote easier instances).

Object-level context expansion: Second, the expansion

of the context model based on the discovered categories can

help to discover certain harder ones. With each discovery,

Ct expands. Thus, for every window remaining in U , we re-

vise its object-graph Gt(·) to form Gt+1(·), augmenting it

with class affinities for the discovered category, per spatial

component (see Fig. 4). This enriches the object-level con-

text, altering both the feature space and the easiness scores.

Input: Unlabeled images; stuff models c1, . . . , cN0
.

Initialize U with all regions from unlabeled inputs; D = ∅;
C0 = {c1, . . . , cN0

}; t← 1.

while Easy instances remain in U: do
1. Identify easy instances ES(w, Ct) > θt in U .

(Sec. 3.3)

2. Discover single prominent category among them.

(Sec. 3.4)

3. Detect harder intra-class instances with one-class

classifier; move instances to D, add new category to Ct.
(Sec. 3.5)

4. Expand context descriptor for each instance in U .

(Sec. 3.5)

5. Revise familiarity map; recompute easiness.

(Sec. 3.3)

6. Loosen easiness criterion; θt = 2σ − 0.1t. (Sec. 3.6)

t← t+ 1
end

Output: Set of t discovered categories in D.

Algorithm 1: Algorithm recap

In effect, while we have weaker context models when de-

tecting the easiest objects, we have richer context models

when considering harder instances at later iterations. For

example, having detected the “stuff” regions (grass, roads,

sky), the system may discover cows in the simple meadow

scenes, and then exploit its expanded context to later dis-

cover diverse-looking trees that appear in the context of

both grass and cows (see Fig. 5, right).

We validate the impact of both the intra-category model

expansion and object-level context expansion on category

discovery in Sec. 4, Figs. 6 and 9, respectively.

3.6. Iterative Discovery Loop

Finally, having augmented Ct with the newly discovered

category, we proceed to discover the next easiest category.

Note that the easiness scores evolve at each iteration of the

discovery loop as more objects become familiar. Further,

the annealing of the threshold defined in Sec. 3.3 essentially

loosens the “easiest” criterion over time, allowing the algo-

rithm to discover harder categories in later iterations, when

context models are potentially richer. As the method iter-

ates, it accounts for more instances.

We iterate the process until the remaining instances in U
are too hard: this makes the system robust to noisy and rare

instances that do not belong to any cluster. Alg. 1 summa-

rizes the steps of our algorithm.

4. Results

Our experiments quantify our method’s clustering and

segmentation accuracy using standard metrics from previ-

ous work [19, 10, 6, 11], and we additionally demonstrate

classification performance on novel images using models

learned with the discovered categories.
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Baselines: We compare to several baselines: 1) a side-

by-side implementation of batch clustering, 2) a baseline

that focuses on the hardest instances first (those with low-

est easiness) but otherwise follows our pipeline, and 3) two

existing state-of-the-art discovery methods [19, 11].

Dataset: We use the MSRC-v0 dataset, which consists

of 3,457 natural scenes with 21 object classes (building,

tree, cow, sheep, car, bicycle, sign, window, grass, sky,

mountain, airplane, water, flower, bird, chair, road, body,

leaf, chimney, door), and was previously studied in [19, 11].

The wide variety of categories allows us to properly evalu-

ate the impact of both easiness selection and context refine-

ment. We learn stuff classes on 40% of the data, and run

discovery on the other 60%.4 With 50 sampled windows per

image, this makes 60,000 instances in the unlabeled pool.

Implementation details: We use [2] to obtain candidate

stuff regions. We combine texture, color, and shape fea-

tures to form A(w) for window w. To describe texture, we

compute SIFT bag-of-words histograms for the regions and

Spatial Pyramid histograms for the windows; we densely

sample 8-pixel wide SIFT patches at every pixel. To de-

scribe color, we use Lab color space histograms, with 23

bins per channel. To describe shape, we compute pHOG de-

scriptors with 3 levels and 8 bins. For the object-graphs, we

generate an over-segmentation with roughly 50 superpixels

per image, and fix R = 20, following [11]. We normalize

all histograms to sum to 1. We set ν = 0.1 for the one-class

SVM.

Evaluation metrics: To quantify discovery accuracy, we

use purity [21], which is the percentage of correctly labeled

instances, where all instances in a cluster are assigned to its

majority class’s true label. To score a window, we take its

true label to be that to which the majority of its pixels be-

long. To quantify the segmentation accuracy of a window

w, we use the pixel-level overlap score, OS = |GT∩w|
|GT∪w| ,

where GT is the ground-truth object segmentation, i.e., the

tightest bounding box covering the full object region asso-

ciated with w’s majority pixel label.

Object discovery accuracy: We first analyze the quality

of our discovered clusters, compared to both the batch and

“hardest first” baselines. All methods use the same features

and agglomerative clustering algorithm. The batch baseline

is meant to show the limitations of existing methods, all of

which determine k models in one pass over all the data. To

ensure the batch baseline is competitive, we give it the non-

overlapping windows with the highest objectness score per

image as input.

Fig. 6 shows the results. We plot purity as a function of

4In all experiments we treat “stuff” classes as initial context, as ex-

plained in Sec. 3.2. While in principle one could also use our framework

with “things” as initial known classes, the implementation is not straight-

forward with the cues we chose (regions for stuff, windows for things).

See [11] for results analyzing the impact of which classes serve as initial

context for discovery.
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Figure 6. Discovery accuracy as a function of the percentage of

unique object instances discovered. Our approach produces sig-

nificantly more accurate clusters than either baseline, while selec-

tively ignoring instances that cannot be grouped well.

the % of ground-truth object instances discovered in order

to analyze the quality of the discovered groups and quantify

the recall rate for the true objects found. We count true

objects as windows with at least 50% overlap with ground

truth; if multiple windows overlap a ground-truth object, we

score only one of them. Each point shows the result for a

given number of clusters, for k = t = [1, 40]. At each

iteration, our method finds about 5-15% of the instances to

be “easy”.

Our approach provides significantly more accurate dis-

coveries than either baseline. Note that purity increases

with k for the batch method, since the k-way clusters com-

puted over all windows get smaller, which by definition gen-

erates higher purity. In contrast, our method accounts for

more windows as t increases, and purity gradually declines

as the easiness criterion is relaxed. This difference high-

lights the core concept behind our approach: rather than

force k splits, it steadily and selectively increases its pool of

discovered objects. It purposely does not integrate all pos-

sible object instances (ignoring harder or poorly grouped

ones), and yields accuracy more than twice as good as the

batch approach. (In Table 1, we show the impact that this

has on generalization performance.) For reference, the up-

per bound on instances we could discover is 53%, which is

the portion of true objects present in the initial 50 windows

per image. Most of the missed objects (for any method) are

small object parts, e.g., windows or doors on cars, or objects

that are not well-represented with windows, e.g., walls that

are labeled as “building” in the ground truth.

Our substantial improvement over the “hardest-first”

baseline validates our claim that considering the easiest in-

stances per iteration leads to more accurate models. It also

indicates that the easiest instances are indeed those that best

capture true object regions. Note that while the hardest-first

baseline technically has higher purity than batch, it discov-

ers almost no objects—most windows it chooses to group

overlap multiple objects or object parts.

Finally, the plot also reveals the impact of our intra-

category model expansion. By using models discovered on

easier examples to classify harder instances of the same ob-
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Figure 8. Object segmentation accuracy for random image win-

dows (left), windows sampled by objectness alone (center), and

those discovered by our approach (right). Higher values are better.

ject, we successfully discover a larger percentage of the in-

stances in the data, with only a slight reduction in purity.

(Compare “Ours” to “Ours w/o ICME” in Fig. 6.)

Fig. 7 shows representative example discoveries, sorted

by iteration. We display the top 10 regions for each cat-

egory, as determined by their silhouette scores. Note that

the easiest categories (trees and bicycles) have high object-

ness and context-awareness scores, as well as strong texture,

color, and context consistency, causing them to be discov-

ered early on. The harder chimney and sheep objects are

not discovered until later. There are some failure cases as

well (see t = 3, 8), such as re-discovering a familiar cate-

gory (trees) or merging different categories due to similar

appearance (cars and windows).

Object segmentation accuracy: Since the images con-

tain multiple objects, our algorithm must properly segment

each object in order to obtain clusters that agree with se-

mantic categories. Thus, we next compare the overlap ac-

curacy for the object instances we discover in 40 categories

to (1) the initial 50 windows sampled per image accord-

ing to their objectness scores, and (2) 50 randomly sampled

windows per image.

Fig. 8 shows the results. The windows sampled ac-

cording to objectness are already significantly better than

the random baseline, showing the contribution we get from

the method of [1]. However, our method produces even

stronger segmentations, showing the impact of the proposed

context-awareness and easiness scoring.

Impact of expanding models of object context: Next

we evaluate the impact of object-level context expansion.
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Figure 9. Impact of expanding the object-level context.

To isolate this aspect, we compare against a baseline that

follows the same pipeline as our method, but uses familiar

models for only the initial stuff categories; it does not up-

date its context model after each discovery.

Fig. 9 shows the results, in terms of purity as a function

of the number of discovered categories. As expected, the

cluster quality is similar in the first few iterations, but then

quickly degrades for the baseline. The first few discoveries

consist of easy categories with familiar “stuff” surrounding

them, and so the baseline performs similarly to our method.

However, without any updates to the context model, it can-

not accurately group the harder instances (e.g., cars, build-

ings). In contrast, by revising the object-level context with

new discoveries, we obtain better results.

Comparison to state-of-the-art methods: We next

compare against two existing state-of-the-art batch discov-

ery algorithms: our object-graph method [11] and the La-

tent Dirichlet Allocation topic model method of Russell et

al. [19]. These are the most relevant methods in the litera-

ture, since both perform discovery on images with multiple

objects (other techniques generally assume a single object

per image). We run all methods on the same MSRC data,

and use publicly available source code, which includes fea-

ture extraction. To quantify how well each method summa-

rizes the same data, we use the F-measure: 2·P ·R
P+R

, where

P denotes precision and R denotes recall.5 Since we do

not know the optimal k value for any method, we generate

results for a range of values and show the distribution (we

consider k = [10, 40], since the data contains 21 total ob-

jects). Fig. 10 shows that our method produces the most

5We evaluate recall with respect to each method’s output discoveries,

since the target categories are slightly different. The object-graph method

and ours attempt to discover only the “things”, while the topic model

method attempts to discover all categories.
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Figure 10. Comparison to state-of-the-art discovery methods. Our

method summarizes the data more accurately than either baseline.

reliable summary of the unlabeled image data.

Predicting instances in novel images: Finally, we test

whether the discovered categories generalize to novel im-

ages outside of the discovery pool. The goal is to test how

well the system can reduce human effort in preparing data

for supervised classifier construction. The discovery system

presents its clusters to a human annotator for labels, then

uses that newly labeled data to train models for the named

object categories. Given a novel image region, it predicts

the object label.

We train one-vs-one SVM classifiers (with C = 1) for all

discovered categories using the appearance kernels. To sim-

ulate obtaining labels from a human annotator, we label all

instances in a cluster according to the ground-truth majority

instance. In addition to the baselines from above, we com-

pare to two “upper bounds” in which the ground truth labels

on all instances are used to train a nearest-neighbor (NN)

and SVM classifier. We test on the 40% split that trained

the stuff models (which is fine, since the test set used here

consists only of objects), totaling 2,836 test windows from

16 object categories.

Table 1 shows the results, for a range of iterations.

Alongside test accuracy, we show the number of manually-

provided labels required by each method. As expected, the

fully supervised methods provide the highest accuracy, yet

at the cost of significant human effort (one label per train-

ing window). On the other hand, our method requires a

small fraction of the labels (one per discovered category),

yet still achieves accuracy fairly competitive with the su-

pervised methods, and substantially better than either the

batch or hardest-first baselines.

This result suggests a very practical application for dis-

covery, since it shows that we can greatly reduce human

annotation costs and still obtain reliable category models.

Conclusions: We introduced a self-paced discovery

framework that progressively accumulates object models

from unlabeled data. Our experiments demonstrate its clear

advantages over traditional batch approaches and represen-

tative state-of-the-art techniques. In future work, we plan

to explore related ideas in the video domain, and further in-

vestigate how such a system can most effectively be used

for interactive labeling with a human-in-the-loop.

Ours Hardest first Batch Sup. NN Sup. SVM

# of labels required 10 10 10 2721 2721

accuracy (%) 47.71 27.33 33.96 54.69 64.39

# of labels required 20 20 20 — —

accuracy (%) 47.14 26.16 34.34 — —

# of labels required 30 30 30 — —

accuracy (%) 45.80 29.16 29.90 — —

# of labels required 40 40 40 — —

accuracy (%) 49.15 27.19 32.51 — —

Table 1. Classification results on novel images, where discovered

categories are interactively labeled. Our approach yields good pre-

diction accuracy for minimal human effort.
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