








(a) Easy Instances (b) Hard Instances

Figure 3. Randomly selected examples among the easiest and
hardest instances chosen by our algorithm. Our method is able
to bypass the hard or noisy instances, and focus on the easiest
ones first. Note that a region with high objectness can yield low

easiness if its context is yet unfamiliar (e.g., see red boxes in (b)).

age of their familiarity scores:

ij

where w; = R — j + 1 serves to give regions nearest to the
window the most influence. Before combining the compo-
nent Obj(-) and C'A(+) terms, we rescale by mapping their
distributions to standard Gaussians.

We sort all unclustered instances in decreasing order of
easiness (Eqn. 2); see Fig. 3 for examples. Then, we per-
form discovery on only the easiest instances, as determined
by a threshold computed from the data: 6; = 20 — 0.1¢,
where o denotes the standard deviation of all easiness
scores in U/ and ¢ is the iteration of discovery. Since ES(-)
has a standard Gaussian distribution, larger portions of its
right tail are considered to be “easy” over the iterations.
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3.4. Single Prominent Category Discovery

Thus far we have a way to model familiar discovered ob-
jects and to identify the easiest instances. Now we overview
how we represent each easy instance, and then how we ex-
tract a single prominent cluster among them.

Representation for each instance: Given a candidate
easy window w € U at iteration ¢, we form an appearance
A(w) and context G;(w) descriptor. We use standard de-
scriptors for appearance (e.g., pHOG; see Sec. 4), and a
variant of the object-graph [11] for context. The object-
graph pools the familiar category likelihoods for the win-
dow’s spatially nearest superpixels, recording the values ac-
cording to their relative layout. The resulting descriptor is a
series of histograms:

Gt(w): [Hl(w),...,HR(w)], (5)
where for ¢ = 1, ..., R each component histogram
[Z P(Sja( ZP S]a CNf)
j=1
Zp(sjb( ZP S]b cNt)]
j=1
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Figure 4. (left) The object-graph descriptor [11] for window w at
iteration ¢. Each histogram H;(w) accumulates the likelihoods for
the IV; familiar classes (c1, . . ., ¢) over the nearest ¢ superpixels,
up to i = R. (right) The descriptor at iteration ¢ 4+ 1. Note how it
has expanded to reflect the most recent discovered category: ci41.

accumulates the likelihoods for the N; familiar classes over
the nearest ¢ superpixels, where s;, (w) denotes the j-th
nearest superpixel above the window w, and s;, (w) denotes
the j-th nearest one below it. Nearness is determined based
on region centroids. (See Fig. 4.)

To compute the similarity between two windows w; and
wj, we use the combined kernel:

K(wi,w;) = Kz (Awi), A(w;)) + Ky (Gi(wi), Gi(wy))

(6)
where K2 denotes a X2 kernel. Under this kernel, easy
instances with both similar appearance and context are most
likely to be grouped together.

Prominent category discovery: Given the current easy
windows and the combined kernel, at each iteration we
want to expand the pool of discovered categories with a sin-
gle prominent cluster. Recall, the easiest instances already
serve to focus the algorithm on those regions with consis-
tent representations. In particular, our context-awareness
criterion is directly linked to the data representation dur-
ing clustering: the easiest instances are surrounded by fa-
miliar regions with relatively high likelihoods (see Eqns. 3
and 4), which makes comparisons between their object-
graphs meaningful. Thus, by seeking a single new cluster,
we can conservatively identify the most obvious new group;
further, we can incrementally refine the context model most
quickly for future discoveries.

To discover the most prominent category, we first par-
tition the data into candidate groups, and then refine the
most distinctive one. Specifically, we perform complete-
link agglomerative clustering over the easy instances us-
ing the kernel in Eqn. 6, which offers robustness to out-
liers (i.e., windows that are poorly localized or contain rare
objects) and allows us to target a cluster size rather than
a cluster number. We stop merging when the distance be-
tween the most similar (yet-unclustered) instances becomes
too large—specifically, greater than one standard deviation
beyond the mean distance between all instances—and au-
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Figure 5. Discovered category knowledge expansion. See Sec 3.5.

tomatically select the tightest cluster with the highest sil-
houette coefficient [21] among the candidate groups. We
then refine the selected instances with Single-Cluster Spec-
tral Graph Partitioning (SCSGP) [17, 16], which maximizes
the average consensus. This step reduces possible outliers
in the discovered group from agglomerative clustering.

We found this procedure to perform much better in prac-
tice than simply directly applying a “single-cluster” algo-
rithm (e.g., Min Cut or SCSGP alone). This is likely due to
the latter’s sensitivity to a small number of outlying points,
and the presence of overlapping clusters.

3.5. Discovered Category Knowledge Expansion

Each newfound discovery—a single prominent cluster
identified among the easiest instances—serves to benefit
later discoveries; this is a key property of our self-paced
curriculum learning approach. In particular, it helps at both
the intra-category and inter-category levels, as we explain
next.

Intra-category model expansion: First, the initially
discovered easier instances yield a model that can be used to
detect the harder instances, which would not have clustered
well due to their appearance or different context. We use in-
stances in the newly discovered category to train a one-class
SVM based on their appearance representation (no context).
Then, we apply the classifier to all remaining windows in {4,
merge the positively classified instances with the discovered
category, and move them to D.

While object-level context helps the discovery algorithm
group the easier instances, we intentionally exclude context
from the classifier’s feature space for this stage. The goal is
to be more inclusive and identify the harder instances of the
class. For example, we might first discover cows in grass as
the easy case, and then use the corresponding cow model to
find other more challenging instances of cows that are par-
tially occluded or surrounded by other animals (see Fig. 5,
left; darker dots denote easier instances).

Object-level context expansion: Second, the expansion
of the context model based on the discovered categories can
help to discover certain harder ones. With each discovery,
C; expands. Thus, for every window remaining in U, we re-
vise its object-graph G¢(-) to form Gy41(+), augmenting it
with class affinities for the discovered category, per spatial
component (see Fig. 4). This enriches the object-level con-
text, altering both the feature space and the easiness scores.
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Input: Unlabeled images; stuff models c1, ..., cn,.
Initialize ¢/ with all regions from unlabeled inputs; D = (J;
Co = {C1,...,CNO};t<— 1.

while Easy instances remain in U: do

1. Identify easy instances E'S(w,Ct) > 0+ inU.

(Sec. 3.3)

2. Discover single prominent category among them.
(Sec. 3.4)

3. Detect harder intra-class instances with one-class
classifier; move instances to D, add new category to C;.
(Sec. 3.5)

4. Expand context descriptor for each instance in /.
(Sec. 3.5)

5. Revise familiarity map; recompute easiness.

(Sec. 3.3)

6. Loosen easiness criterion; 0
t+—t+1

20 — 0.1¢. (Sec. 3.6)

end
Output: Set of ¢ discovered categories in D.

Algorithm 1: Algorithm recap

In effect, while we have weaker context models when de-
tecting the easiest objects, we have richer context models
when considering harder instances at later iterations. For
example, having detected the “stuff” regions (grass, roads,
sky), the system may discover cows in the simple meadow
scenes, and then exploit its expanded context to later dis-
cover diverse-looking trees that appear in the context of
both grass and cows (see Fig. 5, right).

We validate the impact of both the intra-category model
expansion and object-level context expansion on category
discovery in Sec. 4, Figs. 6 and 9, respectively.

3.6. Iterative Discovery Loop

Finally, having augmented C, with the newly discovered
category, we proceed to discover the next easiest category.
Note that the easiness scores evolve at each iteration of the
discovery loop as more objects become familiar. Further,
the annealing of the threshold defined in Sec. 3.3 essentially
loosens the “easiest” criterion over time, allowing the algo-
rithm to discover harder categories in later iterations, when
context models are potentially richer. As the method iter-
ates, it accounts for more instances.

We iterate the process until the remaining instances in I/
are too hard: this makes the system robust to noisy and rare
instances that do not belong to any cluster. Alg. 1 summa-
rizes the steps of our algorithm.

4. Results

Our experiments quantify our method’s clustering and
segmentation accuracy using standard metrics from previ-
ous work [19, 10, 6, 11], and we additionally demonstrate
classification performance on novel images using models
learned with the discovered categories.



To appear, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June, 2011.

Baselines: We compare to several baselines: 1) a side-
by-side implementation of batch clustering, 2) a baseline
that focuses on the hardest instances first (those with low-
est easiness) but otherwise follows our pipeline, and 3) two
existing state-of-the-art discovery methods [19, 11].

Dataset: We use the MSRC-v( dataset, which consists
of 3,457 natural scenes with 21 object classes (building,
tree, cow, sheep, car, bicycle, sign, window, grass, sky,
mountain, airplane, water, flower, bird, chair, road, body,
leaf, chimney, door), and was previously studied in [19, 11].
The wide variety of categories allows us to properly evalu-
ate the impact of both easiness selection and context refine-
ment. We learn stuff classes on 40% of the data, and run
discovery on the other 60%.* With 50 sampled windows per
image, this makes 60,000 instances in the unlabeled pool.

Implementation details: We use [2] to obtain candidate
stuff regions. We combine texture, color, and shape fea-
tures to form A(w) for window w. To describe texture, we
compute SIFT bag-of-words histograms for the regions and
Spatial Pyramid histograms for the windows; we densely
sample 8-pixel wide SIFT patches at every pixel. To de-
scribe color, we use Lab color space histograms, with 23
bins per channel. To describe shape, we compute pHOG de-
scriptors with 3 levels and 8 bins. For the object-graphs, we
generate an over-segmentation with roughly 50 superpixels
per image, and fix R = 20, following [11]. We normalize
all histograms to sum to 1. We set v = 0.1 for the one-class
SVM.

Evaluation metrics: To quantify discovery accuracy, we
use purity [21], which is the percentage of correctly labeled
instances, where all instances in a cluster are assigned to its
majority class’s true label. To score a window, we take its
true label to be that to which the majority of its pixels be-

long. To quantify the segmentation accuracy of a window
|GTNw|

|GTUw|?
where GT is the ground-truth object segmentation, i.e., the

tightest bounding box covering the full object region asso-
ciated with w’s majority pixel label.

Object discovery accuracy: We first analyze the quality
of our discovered clusters, compared to both the batch and
“hardest first” baselines. All methods use the same features
and agglomerative clustering algorithm. The batch baseline
is meant to show the limitations of existing methods, all of
which determine k& models in one pass over all the data. To
ensure the batch baseline is competitive, we give it the non-
overlapping windows with the highest objectness score per
image as input.

Fig. 6 shows the results. We plot purity as a function of

w, we use the pixel-level overlap score, OS =

“In all experiments we treat “stuff” classes as initial context, as ex-
plained in Sec. 3.2. While in principle one could also use our framework
with “things” as initial known classes, the implementation is not straight-
forward with the cues we chose (regions for stuff, windows for things).
See [11] for results analyzing the impact of which classes serve as initial
context for discovery.
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Figure 6. Discovery accuracy as a function of the percentage of
unique object instances discovered. Our approach produces sig-
nificantly more accurate clusters than either baseline, while selec-
tively ignoring instances that cannot be grouped well.

the % of ground-truth object instances discovered in order
to analyze the quality of the discovered groups and quantify
the recall rate for the true objects found. We count true
objects as windows with at least 50% overlap with ground
truth; if multiple windows overlap a ground-truth object, we
score only one of them. Each point shows the result for a
given number of clusters, for & = ¢ = [1,40]. At each
iteration, our method finds about 5-15% of the instances to
be “easy”.

Our approach provides significantly more accurate dis-
coveries than either baseline. Note that purity increases
with £ for the batch method, since the k-way clusters com-
puted over all windows get smaller, which by definition gen-
erates higher purity. In contrast, our method accounts for
more windows as t increases, and purity gradually declines
as the easiness criterion is relaxed. This difference high-
lights the core concept behind our approach: rather than
force k splits, it steadily and selectively increases its pool of
discovered objects. It purposely does not integrate all pos-
sible object instances (ignoring harder or poorly grouped
ones), and yields accuracy more than twice as good as the
batch approach. (In Table 1, we show the impact that this
has on generalization performance.) For reference, the up-
per bound on instances we could discover is 53%, which is
the portion of true objects present in the initial 50 windows
per image. Most of the missed objects (for any method) are
small object parts, e.g., windows or doors on cars, or objects
that are not well-represented with windows, e.g., walls that
are labeled as “building” in the ground truth.

Our substantial improvement over the ‘“hardest-first”
baseline validates our claim that considering the easiest in-
stances per iteration leads to more accurate models. It also
indicates that the easiest instances are indeed those that best
capture true object regions. Note that while the hardest-first
baseline technically has higher purity than batch, it discov-
ers almost no objects—most windows it chooses to group
overlap multiple objects or object parts.

Finally, the plot also reveals the impact of our intra-
category model expansion. By using models discovered on
easier examples to classify harder instances of the same ob-
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Figure 8. Object segmentation accuracy for random image win-
dows (left), windows sampled by objectness alone (center), and
those discovered by our approach (right). Higher values are better.

ject, we successfully discover a larger percentage of the in-
stances in the data, with only a slight reduction in purity.
(Compare “Ours” to “Ours w/o ICME” in Fig. 6.)

Fig. 7 shows representative example discoveries, sorted
by iteration. We display the top 10 regions for each cat-
egory, as determined by their silhouette scores. Note that
the easiest categories (trees and bicycles) have high object-
ness and context-awareness scores, as well as strong texture,
color, and context consistency, causing them to be discov-
ered early on. The harder chimney and sheep objects are
not discovered until later. There are some failure cases as
well (see t = 3, 8), such as re-discovering a familiar cate-
gory (trees) or merging different categories due to similar
appearance (cars and windows).

Object segmentation accuracy: Since the images con-
tain multiple objects, our algorithm must properly segment
each object in order to obtain clusters that agree with se-
mantic categories. Thus, we next compare the overlap ac-
curacy for the object instances we discover in 40 categories
to (1) the initial 50 windows sampled per image accord-
ing to their objectness scores, and (2) 50 randomly sampled
windows per image.

Fig. 8 shows the results. The windows sampled ac-
cording to objectness are already significantly better than
the random baseline, showing the contribution we get from
the method of [1]. However, our method produces even
stronger segmentations, showing the impact of the proposed
context-awareness and easiness scoring.

Impact of expanding models of object context: Next
we evaluate the impact of object-level context expansion.
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Figure 9. Impact of expanding the object-level context.

To isolate this aspect, we compare against a baseline that
follows the same pipeline as our method, but uses familiar
models for only the initial stuff categories; it does not up-
date its context model after each discovery.

Fig. 9 shows the results, in terms of purity as a function
of the number of discovered categories. As expected, the
cluster quality is similar in the first few iterations, but then
quickly degrades for the baseline. The first few discoveries
consist of easy categories with familiar “stuff”” surrounding
them, and so the baseline performs similarly to our method.
However, without any updates to the context model, it can-
not accurately group the harder instances (e.g., cars, build-
ings). In contrast, by revising the object-level context with
new discoveries, we obtain better results.

Comparison to state-of-the-art methods: We next
compare against two existing state-of-the-art batch discov-
ery algorithms: our object-graph method [11] and the La-
tent Dirichlet Allocation topic model method of Russell et
al. [19]. These are the most relevant methods in the litera-
ture, since both perform discovery on images with multiple
objects (other techniques generally assume a single object
per image). We run all methods on the same MSRC data,
and use publicly available source code, which includes fea-
ture extraction. To quantify how well each method summa-
rizes the same data, we use the F-measure: zlgi'g, where
P denotes precision and R denotes recall.” Since we do
not know the optimal k value for any method, we generate
results for a range of values and show the distribution (we
consider k = [10, 40], since the data contains 21 total ob-
jects). Fig. 10 shows that our method produces the most

SWe evaluate recall with respect to each method’s output discoveries,
since the target categories are slightly different. The object-graph method
and ours attempt to discover only the “things”, while the topic model
method attempts to discover all categories.
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Figure 10. Comparison to state-of-the-art discovery methods. Our
method summarizes the data more accurately than either baseline.

reliable summary of the unlabeled image data.

Predicting instances in novel images: Finally, we test
whether the discovered categories generalize to novel im-
ages outside of the discovery pool. The goal is to test how
well the system can reduce human effort in preparing data
for supervised classifier construction. The discovery system
presents its clusters to a human annotator for labels, then
uses that newly labeled data to train models for the named
object categories. Given a novel image region, it predicts
the object label.

We train one-vs-one SVM classifiers (with C' = 1) for all
discovered categories using the appearance kernels. To sim-
ulate obtaining labels from a human annotator, we label all
instances in a cluster according to the ground-truth majority
instance. In addition to the baselines from above, we com-
pare to two “upper bounds” in which the ground truth labels
on all instances are used to train a nearest-neighbor (NN)
and SVM classifier. We test on the 40% split that trained
the stuff models (which is fine, since the test set used here
consists only of objects), totaling 2,836 test windows from
16 object categories.

Table 1 shows the results, for a range of iterations.
Alongside test accuracy, we show the number of manually-
provided labels required by each method. As expected, the
fully supervised methods provide the highest accuracy, yet
at the cost of significant human effort (one label per train-
ing window). On the other hand, our method requires a
small fraction of the labels (one per discovered category),
yet still achieves accuracy fairly competitive with the su-
pervised methods, and substantially better than either the
batch or hardest-first baselines.

This result suggests a very practical application for dis-
covery, since it shows that we can greatly reduce human
annotation costs and still obtain reliable category models.

Conclusions: We introduced a self-paced discovery
framework that progressively accumulates object models
from unlabeled data. Our experiments demonstrate its clear
advantages over traditional batch approaches and represen-
tative state-of-the-art techniques. In future work, we plan
to explore related ideas in the video domain, and further in-
vestigate how such a system can most effectively be used
for interactive labeling with a human-in-the-loop.

[ [ Ours [ Hardest first [ Batch [ Sup. NN [ Sup. SVM ]
[ # of labels required [ 10 [ 10 [ 10 [ 2721 [ 2721 ]
[ accuracy (%) [ 47.71 [ 27.33 [ 33.96 [ 54.69 [ 64.39 ]
[ # of labels required [ 20 [ 20 [ 20 [ — [ — ]
[ accuracy (%) [ 47.14 [ 26.16 [ 34.34 [ — [ — ]
[ #oflabels required [ 30 | 30 [ 30 ] — [ — |
[ accuracy (%) [ 45.80 [ 29.16 [ 29.90 [ — [ — ]
[ #of labels required [ 40 40 [ 40 ] — [ — |
[ accuracy (%) [ 49.15 [ 27.19 [ 32.51 [ — [ — ]
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Table 1. Classification results on novel images, where discovered
categories are interactively labeled. Our approach yields good pre-
diction accuracy for minimal human effort.
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