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Abstract

We present a video summarization approach for egocen-

tric or “wearable” camera data. Given hours of video,

the proposed method produces a compact storyboard sum-

mary of the camera wearer’s day. In contrast to traditional

keyframe selection techniques, the resulting summary fo-

cuses on the most important objects and people with which

the camera wearer interacts. To accomplish this, we de-

velop region cues indicative of high-level saliency in ego-

centric video—such as the nearness to hands, gaze, and

frequency of occurrence—and learn a regressor to predict

the relative importance of any new region based on these

cues. Using these predictions and a simple form of tempo-

ral event detection, our method selects frames for the sto-

ryboard that reflect the key object-driven happenings. Crit-

ically, the approach is neither camera-wearer-specific nor

object-specific; that means the learned importance metric

need not be trained for a given user or context, and it can

predict the importance of objects and people that have never

been seen previously. Our results with 17 hours of ego-

centric data show the method’s promise relative to existing

techniques for saliency and summarization.

1. Introduction

The goal of video summarization is to produce a com-

pact visual summary that encapsulates the key components

of a video. Its main value is in turning hours of video into a

short summary that can be interpreted by a human viewer in

a matter of seconds. Automatic video summarization meth-

ods would be useful for a number of practical applications,

such as analyzing surveillance data, video browsing, action

recognition, or creating a visual diary.

Existing methods extract keyframes [29, 30, 8], create

montages of still images [2, 4], or generate compact dy-

namic summaries [22, 21]. Despite promising results, they

assume a static background or rely on low-level appear-

ance and motion cues to select what will go into the final

summary. However, in many interesting settings, such as

egocentric videos, YouTube style videos, or feature films,

the background is moving and changing. More critically, a
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Figure 1. Our system takes as input an unannotated egocentric

video, and produces a compact storyboard visual summary that

focuses on the key people and objects in the video.

system that lacks high-level information on which objects

matter may produce a summary that consists of irrelevant

frames or regions. In other words, existing methods do not

perform object-driven summarization and are indifferent to

the impact that each object has on generating the “story” of

the video.

In this work, we are interested in creating object-driven

summaries for videos captured from a wearable camera. An

egocentric video offers a first-person view of the world that

cannot be captured from environmental cameras. For ex-

ample, we can often see the camera wearer’s hands, or find

the object of interest centered in the frame. Essentially, a

wearable camera focuses on the user’s activities, social in-

teractions, and interests. We aim to exploit these properties

for egocentric video summarization.

Good summaries for egocentric data would have wide

potential uses. Not only would recreational users (including

“life-loggers”) find it useful as a video diary, but there are

also higher-impact applications in law enforcement, elder

and child care, and mental health. For example, the sum-

maries could facilitate police officers in reviewing impor-

tant evidence, suspects, and witnesses, or aid patients with

memory problems to remember specific events, objects, and

people [9]. Furthermore, the egocentric view translates nat-

urally to robotics applications—suggesting, for example,

that a robot could summarize what it encounters while nav-

igating unexplored territory, for later human viewing.

To appear, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.



Motivated by these problems, we propose an approach

that learns category-independent importance cues designed

explicitly to target the key objects and people in the video.

The main idea is to leverage novel egocentric and high-level

saliency features to train a model that can predict important

regions in the video, and then to produce a concise visual

summary that is driven by those regions (see Fig. 1). By

learning to predict important regions, we can focus the vi-

sual summary on the main people and objects, and ignore

irrelevant or redundant information.

Our method works as follows. We first train a regression

model from labeled training videos that scores any region’s

likelihood of belonging to an important person or object.

For the input variables, we develop a set of high-level cues

to capture egocentric importance, such as frequency, prox-

imity to the camera wearer’s hand, and object-like appear-

ance and motion. The target variable is the overlap with

ground-truth important regions, i.e., the importance score.

Given a novel video, we use the model to predict impor-

tant regions for each frame. We then partition the video into

unique temporal events, by clustering scenes that have simi-

lar color distributions and are close in time. For each event,

we isolate unique representative instances of each impor-

tant person or object. Finally, we produce a storyboard vi-

sual summary that displays the most important objects and

people across all events in the camera wearer’s day.

We emphasize that we do not aim to predict importance

for any specific category (e.g., cars). Instead, we learn a

general model that can predict the importance of any ob-

ject instance, irrespective of its category. This category-

independence avoids the need to train importance predictors

specific to a given camera wearer, and allows the system to

recognize as important something it has never seen before.

In addition, it means that objects from the same category

can be predicted to be (un)important depending on their

role in the story of the video. For example, if the camera

wearer has lunch with his friend Jill, she would be consid-

ered important, whereas people in the same restaurant sit-

ting around them could be unimportant. Then, if they later

attend a party but chat with different friends, Jill may no

longer be considered important in that context.

Contributions Our main contribution is a novel egocen-

tric video summarization approach that is driven by pre-

dicted important people and objects. We apply our method

to challenging real-world videos captured by users in un-

controlled environments, and process a total of 17 hours of

video—orders of magnitude more data than previous work

in egocentric analysis. Evaluating the predicted importance

estimates and summaries, we find our approach outperforms

state-of-the-art saliency measures for this task, and pro-

duces significantly more informative summaries than tra-

ditional methods unable to focus on the important people or

objects.

2. Related Work

In this section, we review related work in video summa-

rization, saliency detection, and egocentric data analysis.

Video summarization Static keyframe methods compute

motion stability from optical flow [29] or global scene color

differences [30] to select the frames that go into the sum-

mary. The low-level approach means that irrelevant frames

can often be selected. By generating object-driven sum-

maries, we aim to move beyond such low-level cues.

Video summarization can also take the form of a sin-

gle montage of still images. Existing methods take a

background reference frame and project in foreground re-

gions [2], or sequentially display automatically selected

key-poses [4]. An interactive approach [8] takes user-

selected frames and key points, and generates a storyboard

that conveys the trajectory of an object. These approaches

generally assume short clips with few objects, or a human-

in-the-loop to guide the summarization process. In contrast,

we aim to summarize a camera wearer’s day containing

hours of continuous video with hundreds of objects, with

no human intervention.

Compact dynamic summaries simultaneously show sev-

eral spatially non-overlapping actions from different times

of the video [22, 21]. While the framework aims to

focus on foreground objects, it assumes a static camera

and is therefore inapplicable to egocentric video. A re-

targeting approach aims to simultaneously preserve an orig-

inal video’s content while reducing artifacts [24], but unlike

our approach, does not attempt to characterize the vary-

ing degrees of object importance. In a semi-automatic

method [17], irrelevant video frames are removed by detect-

ing the main object of interest given a few user-annotated

training frames. In contrast, our approach automatically

discovers multiple important objects.

Saliency detection Early saliency detectors rely on

bottom-up image cues (e.g., [12]). More recent work tries

to learn high-level saliency measures, whether for static im-

ages [18, 3, 6] or video [16]. Whereas typically such met-

rics aim to prime a visual search process, we are interested

in high-level saliency for the sake of isolating those things

worth summarizing. Researchers have also explored rank-

ing object importance in static images, learning what people

mention first from human-annotated tags [25, 11]. In con-

trast, we learn the importance of objects in terms of their

role in a long-term video’s story. Relative to any of the

above, we introduce novel saliency features amenable to the

egocentric video setting.

Egocentric visual data analysis Vision researchers have

only recently begun to explore egocentric visual analysis.

Early work with wearable cameras segments visual and au-

dio data into events [5]. Recent methods explore activity

recognition [7], handled object recognition [23], novelty



detection [1], or activity discovery for non-visual sensory

data [10]. Unsupervised algorithms are developed to dis-

cover scenes [13] or actions [15] based on low-level visual

features extracted from egocentric data. In contrast, we aim

to build a visual summary, and model high-level importance

of the objects present. To our knowledge, we are the first to

perform visual summarization for egocentric data.

3. Approach

Our goal is to create a storyboard summary of a person’s

day that is driven by the important people and objects. The

video is captured using a wearable camera that continuously

records what the user sees. We define importance in the

scope of egocentric video: important things are those with

which the camera wearer has significant interaction.

There are four main steps to our approach: (1) us-

ing novel egocentric saliency cues to train a category-

independent regression model that predicts how likely an

image region belongs to an important person or object; (2)

partitioning the video into temporal events. For each event,

(3) scoring each region’s importance using the regressor;

and (4) selecting representative key-frames for the story-

board based on the predicted important people and objects.

We first describe how we collect the video data and

ground-truth annotations needed to train our model. We

then describe each of the main steps in turn.

3.1. Egocentric video data collection

We use the Looxcie wearable camera1, which captures

video at 15 fps at 320 x 480 resolution. It is worn around

the ear and looks out at the world at roughly eye-level. We

collected 10 videos, each of three to five hours in length (the

max Looxcie battery life), for a total of 37 hours of video.

Four subjects wore the camera for us: one undergraduate

student, two grad students, and one office worker, ranging

in age from early to late 20s and both genders. The dif-

ferent backgrounds of the subjects ensure diversity in the

data—not everyone’s day is the same—and is critical for

validating the category-independence of our approach. We

asked the subjects to record their natural daily activities, and

explicitly instructed them not to stage anything for this pur-

pose. The videos capture a variety of activities such as eat-

ing, shopping, attending a lecture, driving, and cooking.

3.2. Annotating important regions in training video

To train the importance predictor, we first need ground-

truth training examples. In general, determining whether an

object is important or not can be highly subjective. Fortu-

nately, an egocentric video provides many constraints that

are suggestive of an object’s importance.

In order to learn meaningful egocentric properties with-

out overfitting to any particular category, we crowd-source

1http://looxcie.com/
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Figure 2. Example annotations obtained using Mechanical Turk.

large amounts of annotations using Amazon’s Mechanical

Turk (MTurk). For egocentric videos, an object’s degree of

importance will highly depend on what the camera wearer is

doing before, while, and after the object or person appears.

In other words, the object must be seen in the context of the

camera wearer’s activity to properly gauge its importance.

We carefully design two annotation tasks to capture this

aspect. In the first task, we ask workers to watch a three

minute accelerated video (equivalent to 10 minutes of orig-

inal video) and to describe in text what they perceive to be

essential people or objects necessary to create a summary of

the video. In the second task, we display uniformly sampled

frames from the video and their corresponding text descrip-

tions obtained from the first task, and ask workers to draw

polygons around any described person or object. If none

of the described objects are present in a frame, the anno-

tator is given the option to skip it. See Fig. 2 for example

annotations.

We found this two-step process more effective than a sin-

gle task in which the same worker both watches the video

and then annotates the regions s/he deems important, likely

due to the time required to complete both tasks. Critically,

the two-step process also helps us avoid bias: a single an-

notator asked to complete both tasks at once may be biased

to pick easier things to annotate rather than those s/he finds

to be most important. Our setup makes it easy for the first

worker to freely describe the objects without bias, since s/he

only has to enter text. We found the resulting annotations

quite consistent, and only manually pruned those where the

region outlined did not agree with the first worker’s descrip-

tion. For a 3-5 hour video, we obtain roughly 35 text de-

scriptions and 700 object segmentations.

3.3. Learning region importance in egocentric video

We now discuss the procedure to train a general purpose

category-independent model that will predict important re-

gions in any egocentric video, independent of the camera

wearer. Given a video, we first generate candidate regions

for each frame using the segmentation method of [3]. We

purposefully represent objects at the frame-level, since our

uncontrolled setting usually prohibits reliable space-time

object segmentation due to frequent and rapid head move-

ments by the camera wearer.2 We generate roughly 800 re-

gions per frame.

2Indeed, we found KLT tracks to last only a few frames on our data.
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Figure 3. Illustration of our egocentric features.

For each region, we compute a set of candidate features

that could be useful to describe its importance. Since the

video is captured by an active participant, we specifically

want to exploit egocentric properties such as whether the

object/person is interacting with the camera wearer, whether

it is the focus of the wearer’s gaze, and whether it frequently

appears. In addition, we aim to capture high-level saliency

cues—such as an object’s motion and appearance, or the

likelihood of being a human face—and generic region prop-

erties shared across categories, such as size or location. We

describe each feature in detail below.

Egocentric features Fig. 3 illustrates the three proposed

egocentric features. To model interaction, we compute the

Euclidean distance of the region’s centroid to the closest de-

tected hand in the frame. Given a frame in the test video, we

first classify each pixel as (non-)skin using color likelihoods

and a Naive Bayes classifier [14] trained with ground-truth

hand annotations on disjoint data. We then classify any su-

perpixel as hand if more than 25% of its pixels are skin.

While simple, we find this hand detector is sufficient for our

application. More sophisticated methods would certainly be

possible as well.

To model gaze, we compute the Euclidean distance of

the region’s centroid to the frame center. Since the camera

moves with the wearer’s head, this is a coarse estimate of

how likely the region is being focused upon.

To model frequency, we record the number of times an

object instance is detected within a short temporal segment

of the video. We create two frequency features: one based

on matching regions, the other based on matching points.

For the first, we compute the color dissimilarity between a

region r and each region rn in its surrounding frames, and

accumulate the total number of positive matches:

cregion(r) =
∑

f∈W

[(min
n

χ2(r, rfn)) ≤ θr], (1)

where f indexes the set of frames W surrounding region

r’s frame, χ2(r, rn) is the χ2-distance between color his-

tograms of r and rn, θr is the distance threshold to deter-

mine a positive match, and [·] denotes the indicator func-

tion. The value of cregion will be high/low when r produces

many/few matches (i.e., is frequent/infrequent).

The second frequency feature is computed by matching

DoG+SIFT interest points. For a detected point p in region

r, we match it to all detected points in each frame f ∈ W ,

and count as positive those that pass the ratio test [19]. We

repeat this process for each point in region r, and record

their average number of positive matches:

cpoint(r) =
1

P

P
∑

i=1

∑

f∈W

[

d(pi, p
f
1∗)

d(pi, p
f
2∗)

≤ θp

]

, (2)

where i indexes all detected points in region r, d(pi, p
f
1∗)

and d(pi, p
f
2∗) measure the Euclidean distance between pi

and its best matching point p
f
1∗ and second best matching

point p
f
2∗ in frame f , respectively, and θp is Lowe’s ratio

test threshold for non-ambiguous matches [19]. The value

of cpoint will be high/low when the SIFT points in r produce

many/few matches. For both frequency features, we set W
to span a 10 minute temporal window.

Object features In addition to the egocentric-specific

features, we include three high-level (i.e., object-based)

saliency cues. To model object-like appearance, we use

the learned region ranking function of [3]. It reflects Gestalt

cues indicative of any object, such as the sum of affinities

along the region’s boundary, its perimeter, and texture dif-

ference with nearby pixels. (Note that the authors trained

their measure on PASCAL data, which is disjoint from

ours.) We stress that this feature estimates how “object-

like” a region is, and not its importance. It is useful for

identifying full object segments, as opposed to fragments.

To model object-like motion, we use the feature defined

in [16]. It looks at the difference in motion patterns of a

region relative to its closest surrounding regions. Similar

to the appearance feature above, it is useful for selecting

object-like regions that “stand-out” from their surroundings.

To model the likelihood of a person’s face, we compute

the maximum overlap score
|q∩r|
|q∪r| between the region r and

any detected frontal face q in the frame, using [27].

Region features Finally, we compute the region’s size,

centroid, bounding box centroid, bounding box width,

and bounding box height. They reflect category-

independent importance cues and are blind to the region’s

appearance or motion. We expect that important people and

objects will occur at non-random scales and locations in

the frame, due to social and environmental factors that con-

strain their relative positioning to the camera wearer (e.g.,

sitting across a table from someone when having lunch, or

handling cooking utensils at arm’s length). Our region fea-

tures capture these statistics.

Altogether, these cues form a 14-dimensional feature

space to describe each candidate region (4 egocentric, 3 ob-

ject, and 7 region feature dimensions).

Regressor to predict region importance Using the fea-

tures defined above, we next train a model that can predict a

region’s importance. The model should be able to learn and

predict a region’s degree of importance instead of whether
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Figure 4. Distance matrix that measures global color dissimilarity

between all frames. (Blue/red reflects high/low distance.) The

images show representative frames of each discovered event.

it is simply “important” or “not important”, so that we can

meaningfully adjust the compactness of the final summary

(as we demonstrate in Sec. 4). Thus, we opt to train a re-

gressor rather than a classifier.

While the features defined above can be individually

meaningful, we also expect significant interactions between

the features. For example, a region that is near the camera

wearer’s hand might be important only if it is also object-

like in appearance. Therefore, we train a linear regression

model with pair-wise interaction terms to predict a region

r’s importance score:

I(r) = β0 +

N
∑

i=1

βixi(r) +

N
∑

i=1

N
∑

j=i+1

βi,jxi(r)xj(r), (3)

where the β’s are the learned parameters, xi(r) is the ith

feature value, and N = 14 is the total number of features.

For training, we define a region r’s target importance

score by its maximum overlap
|GT∩r|
|GT∪r| with any ground-truth

region GT in a training video obtained from Sec. 3.2. We

standardize the features to zero-mean and unit-variance, and

solve for the β’s using least-squares. For testing, our model

takes as input a region r’s features (the xi’s) and predicts its

importance score I(r).

3.4. Segmenting the video into temporal events

Given a new video, we first partition the video tempo-

rally into events, and then isolate the important people and

objects in each event. Events allow the final summary to in-

clude multiple instances of an object/person that is central

in multiple contexts in the video (e.g., the dog at home in

the morning, and then the dog at the park at night).

To detect egocentric events, we cluster scenes in such

a way that frames with similar global appearance can be

grouped together even when there are a few unrelated

frames (“gaps”) between them.3 Let V denote the set of

3Traditional shot detection is impractical for wearable camera data; it

oversegments events due to frequent head movements.

all video frames. We compute a pairwise distance matrix

DV between all frames fm, fn ∈ V , using the distance:

D(fm, fn) = 1− wt
m,n exp(−

1

Ω
χ2(fm, fn)), (4)

where wt
m,n = 1

t
max(0, t − |m − n|), t is the size of the

temporal window surrounding frame fm, χ2(fm, fn) is the

χ2-distance between color histograms of fm and fn, and

Ω denotes the mean of the χ2-distances among all frames.

Thus, frames similar in color receive a low distance, subject

to a weight that discourages frames too distant in time from

being grouped.

We next perform complete-link agglomerative cluster-

ing with DV , grouping frames until the smallest maximum

inter-frame distance is larger than two standard deviations

beyond Ω. The first and last frames in a cluster deter-

mine the start and end frames of an event, respectively.

Since events can overlap, we retain (almost) disjoint events

by eliminating those with greater than θevent overlap with

events with higher silhouette-coefficients [26] in a greedy

manner. Higher/lower θevent leads to more/fewer events in

the final summary. See Fig. 4 for the distance matrix com-

puted from one of our subject’s day, and the representative

frames for each discovered event.

One could further augment the distance in Eqn. 4 with

GPS locations, when available (though GPS alone would

be insufficient to discriminate multiple indoor positions in

the same building).

3.5. Discovering an event’s key people and objects

For each event, we aim to select the important people and

objects that will go into the final summary, while avoiding

redundancy. Given an event, we first score each bottom-up

segment in each frame using our regressor. We take the

highest-scored regions (where “high” depends on a user-

specified summary compactness criterion, see below) and

group instances of the same person or object together. Since

we do not know a priori how many important things an event

contains, we generate a candidate pool of clusters from the

set C of high-scoring regions, and then remove any redun-

dant clusters, as follows.

To extract the candidate groups, we first compute an

affinity matrix KC over all pairs of regions rm, rn ∈
C, where affinity is determined by color similarity:

KC(rm, rn) = exp(− 1

Γ
χ2(rm, rn)), where Γ denotes the

mean χ2-distance among all pairs in C. We next partition

KC into multiple (possibly overlapping) inlier/outlier clus-

ters using a factorization approach [20]. The method finds

tight sub-graphs within the input affinity graph while resist-

ing the influence of outliers. Each resulting sub-graph con-

sists of a candidate important object’s instances. To reduce

redundancy, we sort the sub-graph clusters by the average

I(r) of their member regions, and remove those with high
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Figure 5. Precision-Recall for important object prediction across

all splits, and example selected regions/frames. Numbers in the

legends denote average precision. Compared to state-of-the-art

high-level [3, 6] and low-level [28] saliency methods, our egocen-

tric approach more accurately discovers the important regions.

affinity to a higher-ranked cluster. Finally, for each remain-

ing cluster, we select the region with the highest importance

score as its representative. Note that this grouping step re-

inforces the egocentric frequency cue described in Sec. 3.3.

3.6. Generating a storyboard summary

Finally, we create a storyboard visual summary of the

video. We display the event boundaries and frames of the

selected important people and objects (see Fig. 8). Each

event can display a varying number of frames, depending on

how many unique important things our method discovers.

We automatically adjust the compactness of the summary

with selection criteria on the region importance scores and

event overlaps, as we illustrate in our results.

In addition to being a compact video diary of one’s day,

our storyboard summary can be considered as a visual in-

dex to help a user peruse specific parts of the video. This

would be useful when one wants to relive a specific moment

or search for less important people or objects that occurred

with those found by our method.

4. Results

We analyze (1) the performance of our method’s impor-

tant region prediction, (2) our egocentric features, and (3)

the accuracy and compactness of our storyboard summaries.

Dataset and implementation details We collected 10

videos from four subjects, each 3-5 hours long. Each person

contributed one video, except one who contributed seven.

The videos are challenging due to frequent camera view-

point/illumination changes and motion blur. For evaluation,

we use four data splits: for each split we train with data

from three users and test on one video from the remaining

user. Hence, the camera wearers in any given training set

are disjoint from those in the test set, ensuring we do not

learn user- or object-specific cues.

We use Lab space color histograms, with 23 bins per

channel, and optical flow histograms with 61 bins per direc-

tion. We set t = 27000, i.e., a 60 minute temporal window.

We set θr = 10000 and θp = 0.7 after visually examining

a few examples. We fix all parameters for all results. For

efficiency, we process every 15th frame (i.e., 1 fps).

1. size 8. height 15. obj app. 22. bbox x + reg freq.  

2. size + height 9. pt freq. 16. x 23. x + reg freq. 

3. y + face 10. size + reg freq. 17. size + x 24. obj app. + size 

4. size + pt freq. 11. gaze 18. gaze + x 25. y + interaction 

5. bbox y + face 12. face 19. obj app. + y 26. width + height 

6. width 13. y 20. x + bbox x 27. gaze + bbox x 

7. size + gaze 14. size + width 21. y + bbox x 28. bbox y + interaction 

Figure 6. Top 28 features with highest learned weights.

Important region prediction accuracy We first evaluate

our method’s ability to predict important regions, compared

to three state-of-the-art high- and low-level saliency meth-

ods: (1) the object-like score of [3], (2) the object-like score

of [6], and (3) the bottom-up saliency detector of [28]. The

first two are learned functions that predict a region’s likeli-

hood of overlapping a true object, whereas the low-level de-

tector aims to find regions that “stand-out”. Since the base-

lines are all general-purpose metrics (not tailored to egocen-

tric data), they allow us to gauge the impact of our proposed

egocentric cues for finding important objects in video.

We use the annotations obtained on MTurk as ground

truth (GT) (see Sec. 3.2). Some frames contain more than

one important region, and some contain none, simply de-

pending on what the annotators deemed important. On aver-

age, each video contains 680 annotated frames and 280,000

test regions. A region r is considered to be a true positive

(i.e., important object), if its overlap score with any GT re-

gion is greater than 0.5, following PASCAL convention.

Fig. 5 (left) shows precision-recall curves on all test re-

gions across all train/test splits. Our approach predicts im-

portant regions significantly better than all three existing

methods. The two high-level methods can successfully find

prominent object-like regions, and so they noticeably out-

perform the low-level saliency detector. However, by focus-

ing on detecting any prominent object, unlike our approach

they are unable to distinguish those that may be important

to a camera wearer.

Fig. 5 (right) shows examples that our method found to

be important. The top and bottom rows show correct and

incorrect predictions, respectively. Typical failure cases in-

clude under-segmenting the important object if the fore-

ground and background appearance is similar, and detecting

frequently occurring background regions to be important.

Which cues matter most for predicting importance?

Fig. 6 shows the top 28 out of 105 (= 14 +
(

14

2

)

) features

that receive the highest learned weights. Region size is the

highest weighted cue, which is reasonable since an impor-

tant person/object is likely to appear roughly at a fixed dis-

tance from the camera wearer. Among the egocentric fea-

tures, gaze and frequency have the highest weights. Frontal

face overlap is also highly weighted; intuitively, an impor-

tant person would likely be facing and conversing with the

camera wearer.

Some highly weighted pair-wise interaction terms are
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Figure 7. Comparison to alternative summarization strategies, in terms of important object recall rate as a function of summary compactness.
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Figure 8. Our summary (top) vs. uniform sampling (bottom). Our summary focuses on the important people and objects.

also quite interesting. The feature measuring a region’s face

overlap and y-position has more impact on importance than

face overlap alone. This suggests that an important per-

son usually appears at a fixed height relative to the cam-

era wearer. Similarly, the feature for object-like appearance

and y-position has high weight, suggesting that a camera

wearer often adjusts his ego-frame of reference to view an

important object at a particular height.

Surprisingly, the pairing of the interaction (distance to

hand) and frequency cues receives the lowest weight. A

plausible explanation is that the frequency of a handled ob-

ject highly depends on the camera wearer’s activity. For ex-

ample, when eating, the camera wearer’s hand will be visi-

ble and the food will appear frequently. On the other hand,

when grocery shopping, the important item s/he grabs from

the shelf will (likely) be seen for only a short time. These

conflicting signals would lead to this pair-wise term hav-

ing low weight. Another paired term with low weight is

an “object-like” region that is frequent; this is likely due

to unimportant background objects (e.g., the lamp behind

the camera wearer’s companion). This suggests that higher-

order terms could yield even more informative features.

Egocentric video summarization accuracy Next we

evaluate our method’s summarization results. We compare

against two baselines: (1) uniform keyframe sampling, and

(2) event-based adaptive keyframe sampling. The latter

computes events using the same procedure as our method

(Sec. 3.4), and then divides its keyframes evenly across

events. These are natural baselines modeled after classic

keyframe and event detection methods [29, 30], and both

select keyframes that are “spread-out” across the video.

Fig. 7 shows the results. We plot % of important objects

found as a function of # of frames in the summary, in order

to analyze both the recall rate of the important objects as

well as the compactness of the summaries. Each point on

the curve shows the result for a different summary of the

required length. To vary compactness, our method varies

both its selection criterion on I(r) over {0, 0.1, . . . , 0.5}
and the number of events by setting θevent = {0.2, 0.5}, for

12 summaries in total. We create summaries for the base-

lines with the same number of frames as those 12. If a frame

contains multiple important objects, we score only the main

one. Likewise, if a summary contains multiple instances of

the same GT object, it gets credit only once. Note that this

measure is very favorable to the baselines, since it does not

consider object prominence in the frame. For example, we

give credit for the tv in the last frame in Fig. 8, bottom row,

even though it is only partially captured. Furthermore, by

definition, the uniform and event-based baselines are likely

to get many hits for the most frequent objects. These make

the baselines very strong and meaningful comparisons.

Overall, our summaries include more important peo-

ple/objects with fewer frames. For example, for User 2,

our method finds 54% of important objects in 19 frames,

whereas the uniform keyframe method requires 27 frames.

With very short summaries, all methods perform similarly;

the selected keyframes are more spread-out, so they have

higher chance of including unique people/objects. With

longer summaries, our method always outperforms the

baselines, since they tend to include redundant frames re-

peating the same important person/object. On average, we

find 9.13 events/video and 2.05 people/objects per event.

The two baselines perform fairly similarly to one an-

other, though the event-based keyframe selector has a slight

edge by doing “smarter” temporal segmentation. Still, both

are indifferent to objects’ importance in creating the story

of the video; their summaries contain unimportant or re-

dundant frames as a result.

Fig. 8 shows an example full summary from our method

(top) and the uniform baseline (bottom). The colored blocks

for ours indicate the automatically discovered events. We

see that our summary not only has better recall of important

objects, but it also selects views in which they are prominent
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Figure 9. An application of our approach.

Much better Better Similar Worse Much worse

Imp. captured 31.25% 37.5% 18.75% 12.5% 0%

Overall quality 25% 43.75% 18.75% 12.5% 0%

Table 1. User study results. Numbers indicate percentage of re-

sponses for each question, always comparing our method to the

baseline (i.e., highest values in “much better” are ideal).

in the frame. In this example, our summary more clearly

reveals the story: selecting an item at the supermarket →
driving home → cooking → eating and watching tv.

Fig. 9 shows another example; we track the camera

wearer’s location with a GPS receiver, and display our

method’s keyframes on a map with the tracks (purple trajec-

tory) and timeline. This result suggests a novel multi-media

application of our visual summarization algorithm.

User studies to evaluate summaries To quantify the per-

ceived quality of our summaries, we ask the camera wear-

ers to compare our method’s summaries to those generated

by uniform keyframe sampling (event-based sampling per-

forms similarly). The camera wearers are the best judges,

since they know the full extent of their day that we are at-

tempting to summarize.

We generate four pairs of summaries, each of different

length. We ask the subjects to view our summary and the

baseline’s (in some random order unknown to the subject,

and different for each pair), and answer two questions: (1)

Which summary captures the important people/objects of

your day better? and (2) Which provides a better over-

all summary? The first specifically isolates how well each

method finds important, prominent objects, and the second

addresses the overall quality and story of the summary.

Table 1 shows the results. In short, out of 16 total com-

parisons, our summaries were found to be better 68.75% of

the time. Overall, these results are a promising indication

that discovering important people/objects leads to higher

quality summaries for egocentric video.

5. Conclusion

We developed an approach to summarize egocentric

video. We introduced novel egocentric features to train a

regressor that predicts important regions. Using the discov-

ered important regions, our approach produces significantly

more informative summaries than traditional methods that

often include irrelevant or redundant information.
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