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Abstract

We propose a branch-and-cut strategy for efficient

region-based object detection. Given an oversegmented im-

age, our method determines the subset of spatially contigu-

ous regions whose collective features will maximize a clas-

sifier’s score. We formulate the objective as an instance

of the prize-collecting Steiner tree problem, and show that

for a family of additive classifiers this enables fast search

for the optimal object region via a branch-and-cut algo-

rithm. Unlike existing branch-and-bound detection methods

designed for bounding boxes, our approach allows scoring

of irregular shapes—which is especially critical for objects

that do not conform to a rectangular window. We provide

results on three challenging object detection datasets, and

demonstrate the advantage of rapidly seeking best-scoring

regions rather than subwindow rectangles.

1. Introduction

Object detectors determine whether a given object cate-

gory is present in an image and estimate its spatial support.

Many state-of-the-art approaches approximate the object’s

extent with a rectangular window: after training a classi-

fier to distinguish objects from non-objects, a sliding win-

dow is used to exhaustively search a novel image for the

subwindow that yields the best classifier score. In spite of

its simplicity, this approach is responsible for a number of

state-of-the-art results. However, sliding window detection

has well-known fundamental weaknesses: (1) the compu-

tational expense of searching all windows is tremendous,

which leads to sampling heuristics that may miss the ob-

ject’s best region of support, and (2) not all objects are box-

shaped, which leads to representations polluted by features

not belonging to the object.

Recent work offers various ways to avoid sliding win-

dows and improve localization efficiency [1, 2, 3, 4]. Par-

ticularly relevant to our work, recently introduced branch-

and-bound schemes show how to efficiently maximize cer-

tain classifier functions over candidate rectangles [5, 6, 7]

and polygons [7]. Such approaches provide a significant

(a) True bbox is imprecise (b) Pos & neg features

(c) Best subwindow (d) Best connected subregions

Figure 1. Windowed detection vs. region subgraphs. (a) A box can

give imprecise detections (e.g., only 30% of the cat’s bounding box

is actually foreground). (b) Image with local features mapped to

a linear cat classifier’s responses. Dark red dots denote negatively

weighted features; light green dots denote positively weighted fea-

tures. (c) A window detector misses most of the object, since the

rectangle that would include the full object also includes a mis-

leading number of negative features. (d) A region-based detec-

tor that sums classifier responses within connected subregions can

more accurately detect non-boxy objects. Our main contribution

is to show how to obtain this best-scoring region efficiently.

speed-up over traditional sliding windows, without any loss

in accuracy compared to an exhaustive search. However,

they assume that the object fits well inside rectangular or

coarse polygonal regions. This is rather restrictive, both be-

cause a box gives imprecise detection results for non-boxy

objects (snakes, giraffes, cats, etc.), and also because “ex-

tra” features within a window may actually mislead the de-

tector at test time, causing it to miss the object entirely (e.g.,

consider an object surrounded by clutter features that yield

large negative classifier responses). See Figure 1 (a)-(c).

To address these limitations, we introduce a branch-and-

cut approach that efficiently localizes the best-scoring re-

gion for an object category’s classifier. Given a test image,

we first divide it into segments and construct a region-graph:
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the nodes are segments, and the edges link any two adjacent

segments. Next we compute a score for each component re-

gion that indicates how much it could contribute to a possi-

ble detection of the object of interest (whether positively or

negatively), where the scoring function is determined by a

classifier having a specified form. Then, the goal is to iden-

tify the subset of connected regions (nodes) whose summed

scores are maximal—or in other words, whose features col-

lectively give the highest response for the classifier. See

Figure 1 (d).

Obtaining the best-scoring region by exhaustively evalu-

ating all possible subsets of connected nodes would require

time exponential in the number of nodes in the graph. How-

ever, we show that for a certain family of additive functions

(which includes a linear SVM on bags-of-features, nearest-

neighbor local feature classifiers, or boosted classifiers), the

problem of maximizing the detection score over all possible

regions is equivalent to finding the maximum-weight con-

nected subgraph (MWCS). While the MWCS problem is

NP-complete [8], it can be transformed into an instance of

the prize-collecting Steiner tree problem (PCST) [9], which

can be efficiently solved in practice for our problem setting.

We show this formulation is applicable for the “node-only”

subgraph selection problem defined above, enabling fast

and optimal solutions. We further show how to include edge

weights between regions to favor connections according to

learned category-specific models of inter-segment contours.

Our approach offers several advantages over existing

branch-and-bound object detection schemes. It is powerful

enough to model objects of any shape within the region-

graph, and thus is not limited to rigid, boxy categories. Be-

cause it can avoid including extra clutter features surround-

ing the true object of interest, it offers more precise local-

ization. We demonstrate our method with three datasets,

and show that it outperforms both state-of-the-art fast de-

tection methods restricted to rectangles, as well as a related

CRF-based approach with a global connectivity potential.

2. Related Work

Sliding window detection methods are well-suited for

rigid objects with a fairly regular appearance pattern,

and have been quite successful for detecting certain cate-

gories [1, 10]. However, the high computational cost of

evaluating the classifier over a large set of windows is a se-

vere limitation.

The efficient subwindow search (ESS) algorithm of [5],

and subsequent extensions [6], provide branch-and-bound

schemes that efficiently identify the rectangle in the im-

age that maximizes certain classifier functions. While these

methods provide significant speed-ups over sliding window

search, they are best-suited for boxy objects as discussed

above. An extension of ESS shows how to detect com-

posite bounding boxes (composed of k boxes) or k-sided

polygons [7]. However, the fixed k parameter must be

pre-selected, and the value has considerable impact on the

computational cost (the authors recommend values k ≤ 5
for this reason), limiting the actual representable polygon

shapes. Other sliding window alternatives include an ap-

proximation for a Steiner tree problem that selects a small

number of image regions on which to run a classifier [11],

and a ratio-contour algorithm to find polygonal regions with

a strong classifier score [12]. In contrast to any existing

branch-and-bound detection algorithm, we show how to ef-

ficiently compute the optimal best-scoring subset of con-

nected regions, which can be of any shape.

Voting methods that use the Generalized Hough Trans-

form avoid exhaustive search, efficiently aggregating evi-

dence for an object’s presence based on local parts [2, 3,

6, 13]. If training exemplars are segmented, they can also

provide pixel-level detection hypotheses [2, 3]. On the

other hand, they generally require roughly similar view-

points, with minor pose variations between training and

test images. By adopting a region-based bag of features

representation, our framework provides greater flexibility

to such transformations. Furthermore, unlike the Hough-

based techniques, our method is guaranteed to return the

region in the image that maximizes the object’s classifier

output.

Another class of techniques predicts pixel-level class

labels—as a foreground-background map [14, 15, 16], or

as a full multi-class labeling with random field models [17,

18, 19, 20]. Like our strategy, these methods can directly

estimate the support for an object without resorting to rect-

angular bounds. However, the foreground methods often

work best when the object permits a consistent 2d shape

model. Conditional random field (CRF) models maximize

the probability of the joint label assignment, and can be ef-

ficiently trained [19]. Among these models, most relevant

to our approach is the global potential for log-linear CRFs

that enforces that the output labeling be connected [16];

the authors give an approximate solution that relies on an

LP relaxation. In contrast, our approach provides glob-

ally optimal solutions, it accommodates a family of additive

classifiers, allows anytime solutions, and introduces class-

specific models of inter-segment contours. Direct compar-

isons with this model (Section 4) show our method’s opti-

mal solutions have a clear advantage.

3. Approach

We first briefly overview the entire approach: Given

training images in which the spatial extent of the object

of interest is marked at the pixel level, we train an addi-

tive classifier to distinguish that object category from any

other (Section 3.1). Given a new image, we oversegment it

into subregions, extract the image features associated with

each subregion, and pre-compute its resulting contribution
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to the classifier response. This yields a vertex-weighted

region-graph, where the weights are the components of the

classifier score (Section 3.2). We show that the problem

of obtaining the best-scoring contiguous set of regions in

this graph is equivalent to the MWCS problem; this in turn

can be transformed into the PCST problem, which is effi-

ciently solvable in practice with a branch-and-cut algorithm

(Section 3.3). To incorporate inter-region contour cues, we

show how to introduce learned edge costs into the graph

(Section 3.4). The resulting detection method rapidly deter-

mines the region within the image that yields the maximal

classifier response.

3.1. Objective and Classifiers

Suppose we have a classifier function f : R → R that

scores a region R ∈ R according to how strongly it belongs

to a particular object category. Assuming it is a reliable pre-

dictor, true object regions would yield high scores, whereas

other objects, background, and partial object/non-object re-

gions would yield lower scores. For detection, our goal is to

determine the region within a novel image I that maximizes

the score: R∗ = arg maxR∈I f(R).
Note that the best-scoring region can be of an arbitrary

shape. While sliding window approaches also seek the por-

tion of the image that maximizes the classifier response,

they do so only over the restricted domain of rectangles.

We require the classifier to have the property that fea-

tures computed within local regions of the image can be

combined additively to obtain the classifier response for a

larger region. This is what will allow us to decompose

the classifier response spatially across the image into the

region-graph. A linear kernel SVM applied to a bag-of-

features representation has this property, as shown in [5].

In the bag-of-features representation, a vocabulary of

K visual words is obtained by clustering a sample of lo-

cal features (e.g., SIFT) from the training images. An im-

age region with N local features is described by the set

R = {(xi, vi)}
N
i=1

, where each xi refers to the feature po-

sition and vi is the local descriptor. This set in turn can be

mapped to a bag-of-features histogram hv(R) by mapping

each feature vi to its closest visual word ci, and record-

ing the frequency of words in a K-dimensional vector. The

subscripts v reflect that these histograms are binning visual

words. We use superscripts to index a vector.

Using the histograms from the segmented training ex-

amples, we learn a linear SVM decision function: f(R) =
βv +

∑
i αi

v〈hv(R), hv(Ri)〉, where i indexes the train-

ing examples, and αv, βv denote the learned weights and

bias. Exploiting the linearity of the scalar product, Lam-

pert et al. rewrite the expression for f(R) as a sum over

per-feature contributions [5]. Let hj
v(R) denote the count

in the j-th bin of the region histogram hv(R). For every

1 ≤ j ≤ K , the j-th word is associated with a weight wj
v:

wj
v =

∑
i αi

vh
j
v(Ri), and the classifier response for a region

can thus be rewritten as:

f(R) = βv +

K∑

j=1

wj
vhj

v(R) = βv +

N∑

i=1

wci

v , (1)

where again ci is the index of the visual word that feature vi

maps to, ci ∈ [1, K]. Thus, the score of a region is the sum

of its N features’ word weights. The bias term βv can be

ignored for the purpose of maximizing f(R). Bounds for

this scoring function are shown in [5] for the case where R

ranges over rectangles, and they enable an efficient branch-

and-bound maximization procedure for subwindow search.

In the following we show how to instead efficiently maxi-

mize f(R) when R ranges over arbitrarily shaped regions.1

While we focus on linear SVMs and histogram features

in this paper, our approach can also accommodate other

models where the score of an object is additive in the scores

of its individual features. This includes a boosted classi-

fier linearly combining localized weak features, the nearest-

neighbor recognition method of [21]—where an ROI is

scored by the summed minimum distances from every local

feature within it to the class-labeled training features—and,

using recent work by [22], even some non-linear SVMs.

3.2. Constructing a Novel Image’s RegionGraph

Next we define how a novel test image is mapped to a

region-graph G = (V, E), where V is a set of vertices and

E are the edges. To define the vertices, we divide the novel

image into a set of superpixels. We use superpixels as the

smallest spatial tokens (rather than pixels) to enforce some

local coherency. Each superpixel is thus a node in the im-

age’s region-graph, and we insert an edge between any two

superpixels that share a boundary. Now a candidate region

R is any subset of connected nodes in this graph, or in other

words, a connected subgraph.

Each vertex v ∈ V has an associated weight, ω(v),
which represents its contribution to the classifier score.

Note that this weight can be positive or negative initially.

We consider two ways to weight a superpixel vertex, which

vary only in the type of feature used to construct the his-

togram hv(R):
Point features: For this representation, each descriptor

vi is a local point feature (we use SURF [23]), and the

weight assigned to a superpixel vertex is the sum of the

word-weights for all local features located within that super-

pixel: ω(v) =
∑

xi∈v
wci

v . These descriptors are preferable

for deformable objects and/or to maintain greater viewpoint

invariance.

Shape features: Alternatively, each superpixel is

mapped to a single shape descriptor. Specifically, we de-

scribe each region with the histogram of oriented responses

1More precisely, any connected set of segments.
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Figure 2. Approach summary. (a) We over-

segment the test image, and construct a

region-graph. (b) A region’s node weight is

its contribution to the classifier response. The

optimal contiguous set of regions is equiv-

alent to the MWCS problem on the vertex-

weighted region-graph. (c) The MWCS is

transformed into the PCST problem, and we

incorporate class-specific inter-region contour

cues by adding edge costs. (d) The best-

scoring region is obtained by efficiently solv-

ing the PCST instance with a branch-and-cut

algorithm.

of a contour and edge detector [24], binned into spatial grid

cells, following [3]. Each vi is then a concatenated con-

tour+edge histogram, and the visual vocabulary is formed

by quantizing this feature space. For a training region R,

we form hv(R) by mapping the shape descriptors of all su-

perpixels within it to their visual words. For a novel image,

the vertex weight is ω(v) = wci
v , where ci is the single word

associated with that superpixel’s shape descriptor. These

descriptors are preferable for objects with parts defined by

their shape. We experiment with both features.

After considering other alternatives for defining connect-

edness in the region-graph—such as four-connected neigh-

borhoods on dense pixel-based features, or a Voronoi tesse-

lation based on the feature positions—we settled on using

segment adjacency because it can favorably enforce a com-

pact structure. In particular, the segment-based graph helps

avoid selecting subgraphs with short paths that connect only

the positively-weighted nodes, which we found gave unde-

sirable spindly detections.

In order to impose spatial constraints, we restrict edges

between shape nodes whose visual words co-occurred in

any of the training images, and whose predicted object ex-

tents overlap by at least 50%.

3.3. Efficient Region Search (ERS)

This section defines our Efficient Region Search (ERS)

procedure to maximize f(R). We show that the objective

can be reduced to the maximum-weight connected sub-

graph problem (MWCS), which is defined as follows:

MWCS PROBLEM: Given a connected undirected, vertex-

weighted graph G = (V, E) with weights ω : V → R, find

a connected subgraph T = (VT ⊆ V, ET ⊆ E) of G, that

maximizes the score W (T ) =
∑

v∈VT
ω(v).

Here, the set of vertices V are the superpixels, and edges

in E connect pairs of superpixels that share a boundary. The

weight of a vertex ω(v) is the superpixel’s classifier score,

as defined above. The best-scoring subgraph identifies the

most likely region for the object of interest. Note the two

dual views of the representation: at training time, we think

of the ground truth foreground region in terms of its total

histogram of words, whereas at test time, we think of can-

didate connected subgraphs that aggregate the segment ver-

tices’ classifier scores.

Since the graph edges are unweighted under the above

definition, any solution to the MWCS problem is equivalent

to its spanning tree. If all vertices were weighted with pos-

itive values, then the best-scoring subgraph would contain

all vertices, while if all vertices were negatively-weighted

then the solution would simply be the single vertex with

the highest weight. However, when we have both positive

and negative node weights, as is the case for the SVM, the

MWCS problem is NP-complete [8]. A brute force solu-

tion would enumerate all possible subsets of vertices, check

if they are connected, and tally their scores—which would

take time exponential in the number of nodes.

However, the MWCS problem can be transformed into

an instance of the prize-collecting Steiner tree problem

(PCST), as shown in [9]. The value in doing so is that the

optimal solution may be efficiently obtained in practice, for

some cases. The PCST is a well-known problem occurring

frequently in operations research and networking, and

various optimal and approximate solutions exist. Formally:

PCST PROBLEM: Given a connected undirected vertex-

and edge-weighted graph G = (V, E, c, p) with vertex

profits p : V → R
≥0 and edge costs c : E → R

≥0, find a

connected subgraph T = (VT ⊆ V, ET ⊆ E) of G that

maximizes the profit:

P (T ) =
∑

v∈VT

p(v) −
∑

e∈ET

c(e). (2)

Note that in the PCST, both vertex profits and edge costs

must be positive real numbers. This, along with the fact that

edge costs contribute negatively to the total profit in Eqn. 2,

means that any solution of the PCST is a tree.

Let G be an instance of the MWCS with both positive
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and negative vertex weights, and let ω′ = minv∈V ω(v) be

its smallest vertex weight. One can then construct an equiv-

alent instance of the PCST problem G′, by first copying the

set of vertices and edges from G, and then setting the vertex

profits to p(v) = ω(v) − ω′ for all v ∈ V , and setting the

edge costs to c(e) = −ω′ for all e ∈ E. This is a valid

instance of the PCST because both the profits and the costs

are positive; the optimal solutions of the PCST and MWCS

instances are related by W (T ) = P (T ) − ω′. A proof of

this transformation is given in [9].

Once our region-graph is mapped to the PCST problem,

we use the mathematical programming approach of [25] to

identify the maximum weight connected subgraph. We use

this algorithm because it provides solutions that are prov-

ably optimal, and we show it is very efficient in practice for

most region-graphs of reasonable size (hundreds of super-

pixels). See Sec. 4 for empirical run times.

The algorithm first applies a series of pre-processing

steps to simplify the input graph, such as removing edges

between two nodes if the edge cost is larger than the shortest

path between the two nodes. Then, the graph is transformed

into a directed graph by duplicating every undirected edge

and introducing a root node. An integer linear program

(ILP) is built on the transformed graph by introducing a bi-

nary integer variable for every vertex and edge to model its

presence or absence in the solution. Then, an exponential

number of cut constraints or connectivity inequalities are

used to model the connectedness of the solution. Finally,

a branch-and-cut algorithm is applied to efficiently solve

the PCST. An LP approximation of the problem provides

tight bounds for each stage of the branching tree, and the

connectivity constraints are iteratively added only when the

current solution violates them. Violated cut constraints are

efficiently obtained using a maximum flow algorithm in a

support graph with arc-capacities given by the current for-

mulation. See [25] for details.

The formulation also permits one to obtain “anytime” so-

lutions, and multiple sub-optimal solutions along with the

optimal one, which we can utilize to detect multiple in-

stances of an object in the same image, or to sample among

the classifier’s most confident regions.

3.4. Efficient Region Search with Contours (ERSC)

Our ERS approach as defined in the previous section

uses only vertex weights to obtain the best-scoring sub-

graph. While this is sufficient to strictly capture the con-

tiguous regions that maximize the classifier response, some

undesirable effects may arise. Specifically, it may include

background regions if the classifier maps their features in-

correctly to positive weights.

To address this issue, we introduce edge weights be-

tween pairs of adjacent superpixels based on the strength

of their intervening contour. Our strategy must take into ac-

count two things—first, just as with the vertex weights, we

want the best-scoring distribution of contours to be identi-

fiable based on the sum of spatially distributed scores (the

edge weights), and second, the internal contour properties

may be class-specific (and thus should be learned).

To this end, we model an object region R as a sub-

tree within the region-graph (as opposed to a subgraph in

Sec. 3.3) whose score is the sum of its node and edge

weights. Then, we propose a bag-of-contour-strengths his-

togram vector that captures the statistics of the internal con-

tours within an object, and whose scores can be directly

mapped to the edge costs c(e) in the PCST instance. In-

tuitively, we expect the contours between an object and its

background to be highly salient, and therefore we would

like to learn weights such that the scores of segmentations

that cross object boundaries are reduced.

Formally, the distribution of contour strengths he(R) for

an object region R is an L-bin histogram, where each bin

represents a given range in the (scalar) contour saliency

strength. To compute the contour saliency, we use the ultra-

metric associated with the hierarchical segmentation given

by the method of [26]. Essentially, two adjacent regions

more distant in the agglomerative segmentation tree will

have a stronger contour between them.

Given these histograms, we define the Efficient Re-

gion Search-Contour (ERS-C) classifier score: f ′(R) =
wvhv(R)−wehe(R), and show below that it can be mapped

to a PCST instance. Note that by subtracting the con-

tour term, f ′(R) produces lower scores for regions crossing

strong object boundaries, which means the optimal solution

can better exclude background regions.

Analogous to the ERS classifier in Sec. 3.1 (Eqn. 1), we

can decompose the ERS-C score as:

f ′(R) =

N∑

i=1

wci

v −

M∑

j=1

wsj

e , (3)

where we are the edge weights (which we define below),

wci
v are the vertex weights as defined in Sec. 3.1, sj ∈ [1, L]

is the bin index of he(R) into which the contour-strength of

the jth contour within the region falls, and M denotes the

total number of contours in the region R.

We formulate the procedure for learning the contour his-

togram weights, we, in the structured SVM learning frame-

work (see Algorithm 1 in [27]). In particular, we use the

cutting plane algorithm with zero-one loss, and define the

loss to be one for regions with an intersection score of less

than 50% with the ground truth. The algorithm for the zero-

one loss is a special case of the general cutting plane algo-

rithm; at each iteration, we must identify the highest scoring

region R that is incorrectly predicted, and add it to the cur-

rent working set of constraints.

By virtue of our construction, the highest scoring region
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for f ′ can be efficiently obtained by constructing a PCST in-

stance and using the same branch-and-cut procedure above

to solve it (see Sec. 3.3). To form the PCST instance, we

introduce an edge cost using the weighted contour strengths

between the two superpixels: c(e) = w
sj

e (see Eqn. 2).

Then we apply the cutting plane algorithm together with

our branch-and-cut procedure to learn the contour weights

we.2 See Figure 2 for a recap of the entire approach.

While the use of intervening contour cues bears some

resemblance to CRF models developed for pixel labeling

(e.g. [18, 20]), note that in our model the contribution of

each contour strength level is learned at the level of the ob-

ject category, rather than prescribed uniformly for all nodes

and classes. We directly compare ERS-C to a CRF below.

4. Results

We compare to the two most relevant existing methods:

(1) the state-of-the-art efficient subwindow search (ESS)

method [5]—which efficiently provides the best result pos-

sible with bounding box search—and (2) the global connec-

tivity CRF model of [16]—which efficiently provides an ap-

proximate region-based solution. Both methods permit the

same form of histogram-based additive classifier. Relative

to the former, our goal is to demonstrate the advantage of

using our fast subgraph approach to search over regions,

as opposed to searching over rectangular windows. Rela-

tive to the latter, our goal is to demonstrate the advantage

of efficiently computing the optimal solution, as opposed to

an approximate relaxation. For either baseline, we use the

same data as selected by the authors.

Datasets: We use three datasets: the PASCAL VOC

2007, the ETHZ Shapes [13], and the PASCAL VOC 2008.

We test with the PASCAL 2007 cats and dogs (659, 839

images resp.), following [5], since they are deformable ob-

jects with wide pose variation—aspects which make the lin-

ear SVM on bags of point features very effective. We use

the provided trainval and test splits, and obtained ground

truth segmentations. The ETHZ Shape dataset consists of

255 images of five shape categories (Applelogos, Bottles,

Mugs, Giraffes, Swans). It is also a good testbed to empha-

size the limitations of bounding boxes, since most objects

are non-boxy. We use half the examples per category for

training, the rest for testing. Finally, we test with all 20 cat-

egories in the PASCAL VOC 2008 segmentation dataset, a

challenging benchmark [29].

In addition to the usual bounding box accuracy met-

ric, we report pixel-level precision-recall and overlap scores

with ground truth segmentations. These scores offer a

more accurate evaluation of detections, particularly for non-

rectangular objects.

2In our implementation, we simply represent wvhv(R) as the score of

a pre-trained SVM classifier as done in [28] and other recent work. This

simplifies and speeds up the learning procedure.
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Figure 3. Example PASCAL07 detections. First row shows images

with the sign of the point feature scores (sign(wci
v

)) superimposed:

red dots denote negatively weighted features, green dots denote pos-

itive features (best viewed in color). Remaining rows show detec-

tions returned by ESS and ERS. Both methods seek the region that

will accumulate the most green points while avoiding including ex-

cessive red ones. However, since ESS is restricted to finding the max

scoring rectangle, it often over/underestimates the object’s extent.

Our method provides precise arbitrarily shaped detections. Last row

illustrates how ERS-C can exclude spurious background regions.
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Figure 4. Detection accuracy on PASCAL07 objects. Numbers in

legends report mAP. Both of our methods outperform the baseline.

Implementation details: For point features, we use

SURF [23] extracted at Canny edge points, and quantize

the training points into K = 1000 visual words using K-

means. We collect negative examples from both other ob-

jects as well as random background regions. We train a lin-

ear SVM and map each visual word to its score wj
v . We se-

lect the C parameter with cross-validation. To construct the

region-graph, we obtain∼100 regions per image using [26].

We compute per-pixel contour strengths from the resulting

ultrametric contour map. We set L = 10 to coarsely bin the

scalar contour strengths; we have not tried other values.

For shape features, we describe each region with a 4× 4
spatial grid scaled to the region size, where each cell bins

the normalized gPb and Canny edge responses according to

their orientations. To collect responses at multiple scales,

we also tally the responses from blurring the gPb map with

Gaussians of two scales (σ=5,10). To form hv(R), we quan-

tize to K = 50 shape descriptors per class and an additional

K = 750 for background regions.

For the ESS baseline, we use the authors’ publicly avail-

able code and evaluate both methods with exactly the same

point features and classifiers, to enable a direct compari-
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Figure 5. Detection accuracy (top row) and example detections by our method (bottom row) on the ETHZ categories.

son. For both, we evaluate the top-scoring region/rectangle

per image, and obtain its confidence score using a χ2-kernel

SVM on the same bag-of-words features, following [5]. For

comparisons with the CRF approach of [16], we use the fea-

tures and superpixels kindly provided by the authors.

PASCAL 2007 results: Figure 4 compares the accuracy

of our approaches versus ESS [5], and Figure 3 shows ex-

ample detections. For this result we pose a pure localization

task, following [5], where the detector is scored only on

images where the object is present.3 For both categories,

maximizing the classifier response over the region-graph

(ERS) yields much better accuracy than rectangular win-

dows (ESS). In addition, including the edge costs (ERS-C)

further boosts precision. Even under the PASCAL bound-

ing box metric, our method is about 70% more accurate than

ESS (mean AP of 27.2 for ERS, compared to 16.0 for ESS).

This supports our claim that not only does a region-based

detector allow precise localization, but it can also avoid er-

rors due to including misleading features.

The mean overlap scores for our approach and ESS are

31.9%, 22.5% resp. for cats and 29.4%, 23.1% resp. for

dogs (this measure normalizes for per-object area). Our im-

provements are most pronounced for the object instances

that do not fit well in a window.

ETHZ results: Figure 5 shows the results on ETHZ,

scored for the full detection task where we run on all images

(positive or negative). We apply our ERS method using ei-

ther the point features (blue curves), or the shape features

(green curves). ESS is only applicable to the point features

(red curves). Again we see the clear accuracy advantage our

strategy offers. Comparing both methods using the point

features, we see the most significant gains for the Giraffes

and Swans, both of which are poorly captured with a rect-

angular window. For Applelogos and Mugs, ERS-point’s

accuracy is close to ESS’s, which makes sense as these ob-

jects are more boxy. Overall, the mAP of ERS is from 9% to

90% better than ESS using the same features. Using shape

3Note that the curves we show for ESS are not identical to those in [5]

because we use slightly different features, and score at the pixel-level.

features, we see dramatic gains for almost all objects, since

the ETHZ objects have parts well-described by their shape

(e.g., mug handle, bottle neck). Again, even with the bound-

ing box metric our approach is 19% better than ESS (30.1
vs. 25.3 mAP).

To study the importance of learning category-specific

contour strength weights, we conducted an experiment

where the contour weights were swapped among the five

categories (weights learned for Mugs used for Bottles,

Swans for Applelogos, etc.). When swapped to use the

wrong model, the mAP scores of Applelogos, Bottles, and

Mugs drop to 19.9, 33.5, and 25.0 respectively (versus 25.5,

41.2, 30.4). The Giraffe and Swan results remained close to

the ERS scores. This confirms the importance of our learn-

ing procedure in Sec. 3.4; the distribution of internal con-

tour strengths varies in informative ways per category.

PASCAL 2008 results: Finally, we compare our ap-

proach against the method of [16], which provides an ap-

proximate algorithm for using a global connectivity poten-

tial within a standard CRF. Again, to offer the most direct

comparison, we use the exact same features, and follow

the setup defined in [16], which computes the 3-fold cross-

validation accuracy of the foreground segmentation using

the PASCAL overlap criterion [29].

Figure 6 shows the 20-class results and some example

detections. Our ERS approach outperforms the baseline on

17 out of 20 categories, and improves the mean overlap ac-

curacy significantly (0.274 vs. 0.228). On average we ob-

tain a 24% gain per class, with more than 50% increases in

some cases (e.g. pottedplant, sheep, tvmonitor). Our ERS-

C variant also improves four classes relative to ERS. Given

that we are using identical features, this result indicates the

value of obtaining the optimal solution with our approach

as opposed to the approximate inference procedure in [16].

Computation time: Our approach is very efficient in

practice for all the datasets tested, showing the suitability

of this PCST reduction for our problem setting. On average

it converges in 0.29 seconds, which is similar to ESS. The

longest time taken over any single test image was 5.8 secs.
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aerop. bicyc. bird boat bottle bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon. mean

ERS 0.324 0.109 0.268 0.262 0.121 0.405 0.244 0.389 0.120 0.324 0.300 0.288 0.280 0.337 0.257 0.119 0.394 0.224 0.453 0.259 0.274

ERS-C 0.325 0.058 0.257 0.262 0.104 0.405 0.240 0.399 0.097 0.319 0.300 0.249 0.261 0.280 0.249 0.107 0.404 0.210 0.445 0.272 0.262

CRF [16] 0.380 0.091 0.202 0.275 0.115 0.391 0.185 0.311 0.121 0.236 0.269 0.244 0.209 0.268 0.194 0.075 0.249 0.200 0.393 0.152 0.228

Figure 6. Detection overlap accuracy compared to the global connectivity CRF [16] on the PASCAL 2008 (top), and example detections

by our method (bottom). Our optimal solution leads to significantly more accurate results on this challenging dataset.

10
0

10
2

T
im

e
 (

s
e

c
s
)

ESS
ERS

Sliding
Window

Detection time − Pascal

10
0

10
2

T
im

e
 (

s
e
c
s
)

ESS ERS Sliding
Window

Detection time − ETHZ

Figure 7. Our search times on both PASCAL and ETHZ are simi-

lar to ESS’s, and both are orders of magnitude faster than sliding

window search. (Note time is on log scale.)

Figure 7 shows the detection times on a log scale for

ETHZ and PASCAL, as compared to a sliding window that

searches across 30 scales. Note that brute force search for

the max subgraph would take time exponential in the num-

ber of nodes, ∼2100, and cannot be practically tested. Our

method offers two orders of magnitude speed-up, and (un-

like ESS) it permits pixel-level detections of any shape.

5. Conclusions

We introduced an efficient branch-and-cut method for

region-based detection, and with three challenging datasets

we demonstrated its advantages over both existing branch-

and-bound methods that are limited to searching rectangles

and a CRF model. Our approach is the first that can effi-

ciently identify the subregion that maximizes the additive

detector’s scoring function. In future work we will examine

the alternate classifiers accepted by our model.
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