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Abstract

Active learning methods aim to select the most informa-

tive unlabeled instances to label first, and can help to fo-

cus image or video annotations on the examples that will

most improve a recognition system. However, most exist-

ing methods only make myopic queries for a single label at

a time, retraining at each iteration. We consider the prob-

lem where at each iteration the active learner must select

a set of examples meeting a given budget of supervision,

where the budget is determined by the funds (or time) avail-

able to spend on annotation. We formulate the budgeted

selection task as a continuous optimization problem where

we determine which subset of possible queries should max-

imize the improvement to the classifier’s objective, without

overspending the budget. To ensure far-sighted batch re-

quests, we show how to incorporate the predicted change

in the model that the candidate examples will induce. We

demonstrate the proposed algorithm on three datasets for

object recognition, activity recognition, and content-based

retrieval, and we show its clear practical advantages over

random, myopic, and batch selection baselines.

1. Introduction

The accuracy of a supervised classifier is often strongly

linked to the quantity of the annotated training data

available—having access to more examples means each cat-

egory’s variability can be more easily captured. However,

not all examples are equally informative, and an arbitrary

unlabeled example may even be redundant. Active learn-

ing methods provide a way to automatically pinpoint in-

formative examples for which labels should be requested,

thereby reducing supervision without sacrificing accuracy

in the model [1, 2, 3, 4, 5]. Recent results have shown

that active selection can benefit image and video recognition

systems, and save human annotators from excessive image

labeling, segmentation, relevance feedback, or other data

collection tasks [6, 7, 8, 9, 10, 11, 12].

However, there are two limiting assumptions often made

in active learning. First, most methods select a single unla-

beled instance to query at a time, retraining the classifier at

each iteration once the label is obtained. This is a problem

since retraining after every single label is expensive, and

it is often preferable to farm out a batch of good queries

at once. Systems such as Mechanical Turk or LabelMe

provide access to multiple distributed annotators simultane-

ously, but an active learning system that needs to repeatedly

go offline and compute the next annotation request cannot

take advantage of such resources. Second, existing tech-

niques typically assume that all examples require the same

amount of manual effort to label, and thus aim to minimize

the total number of queries made. In reality, the annota-

tion cost associated with labeling different examples often

varies, sometimes significantly. For instance, the longer the

video, the longer it will take to watch it and annotate its

contents; the more sophisticated the image query, the more

we may need to pay a human labeler to answer it.

The technical problem of selecting a good set of exam-

ples at once is challenging, since one must take care to avoid

overlapping information; i.e., it is wasteful to ask a batch

of similar questions. Furthermore, it is risky to formulate a

large selection based only on the current model’s view of the

data: some examples within large sets may lead to signifi-

cant changes to the classifier that ultimately invalidate the

perceived value of others that were selected. While a few

“batch-mode” active learning strategies have been proposed

in the machine learning literature [13, 14, 12, 15], none

consider how to balance the joint selection with annotation

costs. Meanwhile, current active selection approaches that

do account for labeling cost lead to a myopic selection of a

single request at a time [4, 16, 17, 18, 11].

In this paper, we formalize the problem of far-sighted

active learning on a budget. At each iteration the active

learner is allowed to choose a set of examples to get la-

beled, provided the total sum of annotation costs associated

with the selected examples is under a given budget. We pro-

pose a novel method for optimally selecting a set of exam-

ples for a support vector machine (SVM) classifier under

these conditions. Given an unlabeled pool of data where

1



each example has an associated annotation cost, we intro-

duce a set of instance selection variables. We formulate an

optimization problem to learn the maximum margin hyper-

plane along with the instance variables that minimize the

empirical risk (on both the labeled data and selected unla-

beled points), while satisfying the given budget constraint.

We then relax it to a continuous optimization problem that

can be decomposed into two strictly convex optimization

problems loosely coupled in the hyperplane parameters and

selection variables. We devise a monotonically convergent

alternating minimization algorithm to compute the solution.

The proposed approach is the first batch selection strat-

egy that is sensitive to the costs of labeling, and the first

method to allow sets of training examples to be chosen so

as to meet a prescribed budget. The efficiency of the com-

ponent optimization steps makes it rather scalable to large

unlabeled data pools. Furthermore, in contrast to previous

methods, our approach considers how much the classifier

objective changes if we were to obtain the most probable

labels on the candidate examples for selection. We find that

this aspect is critical to performance, particularly in the sce-

nario where one wants to set a large budget.

We validate our method on benchmark datasets for three

applications: object recognition, activity recognition, and

image retrieval. We demonstrate the advantages of our ap-

proach compared to passive, myopic, and batch selection

baselines, and show its effectiveness across a range of bud-

gets. Our results indicate that budgeted selection is crucial

for efficient active learning in practical scenarios, clearly

outperforming conventional myopic selection techniques.

2. Background and Related Work

Various active learning strategies have been proposed

to choose the best example to query for a label, including

methods based on uncertainty sampling [5], entropy [1],

reducing the version space [2], or predicting reductions in

risk [3, 4]. See [19] for a comprehensive survey.

Vision researchers have explored active strategies to an-

notation in order to learn more efficiently about object cate-

gories [7, 8, 9, 10, 11], or to interactively request relevance

feedback from a user [6]. However, in contrast to this work,

the previous approaches focus on myopic selection.

Traditionally, active methods have assumed that each

training example requires the same amount of effort (cost)

to label. The danger in doing so is that this may favor

choosing expensive labels first, leading to inflated portray-

als of accuracy gains when measured relative to the num-

ber of queries [16]. Recent work suggests ways to instead

balance the informativeness criteria against the expected la-

beling costs for various learning problems [4, 16, 20, 21,

18],including object recognition [18, 11].

The authors of [17] explore a form of budgeted learn-

ing where one can interactively accumulate answers about

a particular test example, repeatedly deciding if a further

query is worthwhile before making a prediction. Whereas

their approach builds “active classifiers”, the form of bud-

geted learning we consider pertains to the selection process

among unlabeled candidate training examples.

When one has access to multiple “labelers” at once

(e.g., on MTurk [22, 23]), a batch selection would be

more effective. A few batch-mode active learning meth-

ods have been proposed [14, 24, 15], including one for

vision [12]. Batch selection calls for more than a selec-

tion of the N -best queries at a given iteration, since such a

greedy strategy does not account for possible overlap in in-

formation. Instead, selection functions try to balance infor-

mativeness with the so-called diversity among the selected

set [14, 12, 24].

Unfortunately, by relying on the current classifier to esti-

mate uncertainty, these functions’ performance can degrade

with very large batches; balancing uncertainty and diversity

properly can also require good heuristics. In contrast, our

solution makes selections that account for model changes

that may result from the not-yet-labeled points. The method

of [15] also integrates model changes and formulates selec-

tion as an optimization problem. However, our solution lim-

its the objective to include selected examples rather than the

entire unlabeled set as in [15], which may limit the influ-

ence of erroneous “optimistic” labels. Our method differs

foremost, however, in its ability to work on a budget. Un-

like any previous work, our approach enables variably-sized

batches to be chosen in response to real cost estimates; our

experiments demonstrate the practical advantages.

3. Approach: Budgeted Batch Selection

Given a preliminary recognition model and a budget for

annotations to improve the training set, our method consid-

ers all the available unlabeled image data and computes the

set of recommended requests that are jointly most informa-

tive and fall within the budget.

Below, we first formally define the problem of budgeted

selection, and overview the main idea of our approach. In

Sec. 3.2 we present the detailed formulation and algorithm.

3.1. Problem Definition and Overview

We consider the problem of actively selecting a batch

of examples to label, where the contents of the batch

must be constrained by some budget. Formally, let

L = {(x1, y1), (x2, y2), . . . , (xl, yl)} denote a set of l

initially labeled examples, where yi ∈ {+1,−1}. Let

U = {xl+1, xl+2, . . . , xl+u} denote an unlabeled pool from

which examples can be selected and given to an oracle la-

beler. Each unlabeled example xi is associated with a label-

ing cost ci, which measures the manual effort required to

obtain a label for xi. Note that the cost varies per example.

At each iteration, a set of examples S =



{xk1 , xk2 , . . . , xkn
} ⊆ U can be selected for label-

ing, as long as the total annotation cost of the selection does

not exceed a specified budget T . That is,
∑n

j=1 ckj
≤ T .

Since the costs vary, the number of selected examples n

is not fixed. The goal is therefore to maximally utilize the

given budget T by selecting the set S that is expected to

produce the most gain in the classifier’s performance. After

obtaining labels for the chosen set, the classifier will be

retrained, and the process can repeat, one batch at a time.

A naive approach to this problem, which we refer to as

Myopic Active Batch (MAB) learning, would be to greed-

ily choose the top most uncertain examples according to the

current classifier that fit under the given budget—in other

words, to rank the points in descending order by their un-

certainty, and start adding them to the set S until the total

budget is exhausted. However, such an approach ignores

the information overlap between the selected examples.

Existing methods counter this problem by choosing a set

that contains both examples that are uncertain and that are

mutually diverse [14, 12]. Aside from needing good heuris-

tics to balance the two properties, estimating uncertainty

based on the current classifier (e.g., using the distance from

the margin for an SVM [2]) also fails to capture how un-

certainty will change once the selected examples are added

to the labeled set and the model’s parameters are retrained.

For large batches of examples this can be especially prob-

lematic. In addition, existing methods are specifically tar-

geted at choosing a fixed number of examples at each it-

eration, but a variable-sized batch may more optimally use

labeling resources (i.e., a fixed-size batch must take n total

examples, whereas a more effective selection might entail

choosing a couple of the more expensive examples together

with a set of << n cheaper ones).

Therefore, we propose an approach that directly targets

the amount of reduction in the SVM objective that is to be

expected by choosing a given set of examples under a bud-

get. We call this budgeted batch selection. The main idea

is as follows: we introduce an indicator variable over the

unlabeled examples, and formulate a continuous optimiza-

tion problem to determine which subset of possible queries

should maximize the improvement to the classifier’s objec-

tive, without overspending the budget. When fixing the

selection variables, the optimization reduces to that of a

standard SVM objective function, which can be solved ef-

ficiently; when fixing the model parameters, the selection

variables are computed via linear programming. Because

we incorporate the predicted change in the model that the

candidate examples will induce, the method is “far-sighted”

in terms of the effects of the entire batch.

3.2. Formulation and Algorithm

Given a set of labeled examples L, the SVM objective

seeks the optimal separating hyperplane defined by param-

eters (w, b):

arg min
w,b,ǫ

1

2
||w||2 + C

∑

(xi,yi)∈L

ǫi,

s.t. yi(w
T xi + b) ≥ 1 − ǫi, (xi, yi) ∈ L,

ǫi ≥ 0, (1)

where each ǫi denotes the hinge loss on xi, and C denotes

the constant regularization penalty. This familiar SVM ob-

jective simultaneously minimizes the classification error on

the training examples while maximizing the margin of sep-

aration between the positives and negatives.

Let A and B be two (possibly distinct) sets of labeled ex-

amples. To aid in notation below, we define an intermediate

cost function, which takes parameters fA and B:

g(fA, B) =
1

2
||wA||

2 + CR̂A
B , (2)

where fA denotes the SVM hyperplane parameters fA =
(wA, bA) obtained by training on set A, and R̂A

B =∑
(xi,yi)∈B ǫA

i denotes the empirical loss incurred by model

fA over the set B, and

ǫA
i = max(0, 1 − yi(w

T
Axi + bA)) (3)

denotes the hinge loss on xi resulting from the model fA.

Note that the cost measured by g(fA, B) evaluates a margin

term 1
2 ||wA||

2 (which reflects generalization ability) using

the solution according to labeled data A, whereas it evalu-

ates losses (which reflect misclassifications) on examples in

B using the model fA.

We want both the labels on the candidate selection sets

as well as the existing labeled data to simultaneously in-

fluence the batch selection. As the points in a candidate

set S are as yet unlabeled, we can only estimate the most

“optimistic” cost reduction by maximizing over all possible

labels on S. In the following, we use the term optimistic la-

bels (borrowed from [15]) to refer to a label assignment for

unlabeled points under which cost is maximally reduced.

Let Y ∗ = {yk1 , . . . , ykn
}, be the set of optimistic la-

bels associated with the examples in the optimal selection

S∗ ⊆ U , where Y ∗ ∈ {+1,−1}n, for n = |S∗|. We want

to select (S∗, Y ∗) such that together they yield the maxi-

mal cost reduction, as measured by the cost produced before

their addition to the labeled set versus the cost produced af-

ter they are added. Specifically, we want:

(S∗, Y ∗) = arg min
S⊆U,Y

g (fL′ , L′) − g (fL, L ∪ (S, YL)) ,

s.t.
∑

xi∈S

ci ≤ T, (4)

where L′ = L ∪ (S, Y )—that is, the labeled set expanded

with some label assignment on S—and YL denotes the la-

bels obtained by classifying S using fL. The last inequal-

ity reflects the budget constraint limiting total annotation



cost among selected examples to T . Note that the first term

in the above objective measures the classification error on

L ∪ (S, Y ) and the margin when training using both L and

(S, Y ), while the second term measures both the margin and

the classification error for the selected examples under the

“old” model fL, which is trained only on L. Thus, the opti-

mal (S∗, Y ∗) results in the maximal reduction in the SVM

objective when considering optimistic labels 1.

To solve this optimization problem, we first expand the

representation of the unlabeled set so that each unlabeled

example appears as two examples labeled with both possi-

ble classes. Formally, we expand U to also include:

xi = xi−u, for i ∈ [l + u + 1, . . . , l + 2u],

yi = +1, for i ∈ [l + 1, . . . , l + u],

yi = −1, for i ∈ [l + u + 1, . . . , l + 2u]. (5)

From here on, U represents the expanded unlabeled set. We

then introduce a vector of indicator variables q ∈ [0, 1]2u,

where qj = 1 denotes that example xl+j ∈ S, and qj =
0 denotes that it is not. Let YU denote the set of labels

on all unlabeled examples, which includes the labels Y for

selection S. Now redefining L′ = L ∪ (S, YU ) we can

rewrite the first g term from Eqn. 4 as:

g(fL′ , L′) =
1

2
||wL′ ||2 + CR̂L′

L′

=
1

2
||wL′ ||2 + CR̂L′

L + CuR̂L′

(S,YU ),

=
1

2
||wL′ ||2 + CR̂L′

L + Cu

2u∑

j=1

qjǫ
L′

l+j , (6)

where Cu is a constant regularization penalty for the se-

lected unlabeled examples. Here fL′ is obtained by solving

the optimization problem in Eqn. 1 with the set L∪ (S, Y ),
and the values for each ǫi are also based on this model fL′

(and hence the labels YU ), as denoted by the ǫL′

l+j terms.

Substituting g(fL′ , L′) from Eqn. 6 into Eqn. 4, the de-

sired selection problem can now be written as:

min
w,b,q

1

2
||w||2 + C

∑

xi∈L

ǫi + Cu

2u∑

j=1

ǫl+jqj − Cu

2u∑

j=1

ǫL
l+jqj ,

s.t. yi(w
T xi + b) ≥ 1 − ǫi, ǫi ≥ 0, 1 ≤ i ≤ l + 2u,

2u∑

j=1

qjcj ≤ T,

qj + qu+j ≤ 1, 1 ≤ j ≤ u,

qj ∈ {0, 1}, 1 ≤ j ≤ 2u, (7)

1Note that our motivation for using optimistic labels above, rather than

the expected value over all labels, is to reduce the impact of the current

model’s ambiguity.

where L′ = L∪(S, YU ). Note that our encoding of the indi-

cator means that q∗ itself represents (S∗, Y ∗) from Eqn. 4,

and similarly the expanded labeled set L′ is a function of

q. We drop the superscripts L′ for the ǫi variables for clar-

ity since L′ is now a parameter that we are optimizing over.

Note that the first two terms of Eqn. 6 for g(fL, L∪ (S, Y ))
are constant w.r.t. the optimization variables and thus are ig-

nored. The last term reflects the loss incurred for examples

in S using a model L that does not account for labels YU ,

whereas the middle two reflect errors after its inclusion.

Although Eqn. 7 includes a constraint for every unla-

beled example xl+j ∈ U , since the penalty for the corre-

sponding slack variable ǫl+j is zero whenever qj is zero,

the constraint only affects the annotation cost for examples

with non-zero qj , that is, for xl+j ∈ S. The constraint on

pairs of q variables (qj + qu+j) reflects that only one of the

labels (+1 or −1) can be chosen for an unlabeled example.

The optimization problem defined above is an integer

programming problem which in general is NP-hard. Hence,

we first relax it to a continuous optimization problem by al-

lowing the q variables to take values between (0, 1). Now

the above objective can be seen as two different optimiza-

tion problems loosely coupled by the term Cu

∑2u
j=1 ǫl+jqj :

one on (w, b) and the other on q, both of which are convex.

Fixing q, the minimization over w can be done by standard

convex quadratic programming. Fixing w, the minimization

over q is a convex linear programming problem.

To solve the relaxed problem, we devise an iterative al-

ternating minimization procedure that is guaranteed to con-

verge to a local optimum of the objective function. Assum-

ing q to be constant, Eqn. 7 reduces to

(w∗, b∗) = arg min
w,b

1

2
||w||2 + C

∑

(xi,yi)∈L

ǫi + Cu

2u∑

j=1

ǫl+jqj ,

s.t. yi(w
T xi + b) ≥ 1 − ǫi, ǫi ≥ 0, (xi, yi) ∈ L,

yi(w
T xl+j + b) ≥ 1 − ǫl+j ,

ǫl+j ≥ 0, xl+j ∈ U, yl+j ∈ YU . (8)

Note that this objective has a very similar form to that of the

transductive SVM, as first proposed in [25]. Importantly,

unlike the transductive SVM, in this case the inclusion of

the indicator vector q means we penalize labeling errors on

unlabeled data in S only, which is a subset of all unlabeled

examples. Moreover, for a fixed q the problem reduces to

that of the standard SVM problem, where the annotation

cost for the unlabeled examples is a function of the q vari-

ables. Hence, for a given q, we can efficiently optimize

(w, b) and their optimistic labels for the selected batch.

Conversely, fixing the variables (w, b) and relaxing the



indicator vector as q ∈ (0, 1)2u, Eqn. 7 reduces to

q∗ = argmin
q

Cu

2u∑

j=1

ǫl+jqj − Cu

2u∑

j=1

ǫL
l+jqj ,

s.t.

2u∑

j=1

qjcj ≤ T,

qj + qu+j ≤ 1, 1 ≤ j ≤ u,

0 ≤ qj ≤ 1, 1 ≤ j ≤ 2u. (9)

The above problem is a linear programming problem in q

and can be solved using standard methods like an interior

point method.2 The ǫl+j variables depend on the current

solution for (w∗, b∗) from Eqn. 8, whereas ǫL
l+j is a function

of the parameters (wL, bL)—which are obtained by training

on L alone—and YL, the true labels obtained so far.

Finally, by alternating between Eqns. 8 and 9, we can

compute the batch selection meeting the given budget that is

expected to most improve the classifier. We always initial-

ize the ǫ values to 0, which corresponds to initializing our

method with the myopic solution. We form S∗ by choosing

the examples with the largest qi that fit the given budget T .

Algorithm 1 provides pseudo-code for the procedure.

Note that the constraints on {w, b, ǫ} in Eqn.7 are inde-

pendent of q. Similarly, constraints on q are independent of

{w, b, ǫ}. Hence, fixing q and optimizing for {w, b, ǫ} de-

creases the objective function (Step 5 in Alg. 1). Similarly,

Step 6 also decreases the objective function. Hence, our al-

gorithm converges monotonically. In fact, with a stronger

analysis, it is easy to show that our algorithm converges to

a local optimal of the objective function.

Our solution is quite efficient since it uses an LP and QP

for which several efficient solvers exist. In our experiments,

convergence typically occurs in ∼12 iterations. Our Matlab

code takes about 0.6 secs per batch selection for 200 unla-

beled examples, and 4 mins for 5000 examples.

3.3. Summary: Using the Budgeted Selection

Our approach can be used for active training of any SVM

classification problem. The inputs are an initial training set

containing some labeled examples of the categories of in-

terest, the number of selection iterations, an unlabeled pool

of data, and the available budget. In practice, one would set

this budget according to the resources available—for exam-

ple, the money one is willing to spend on Mechanical Turk

to get a training set for the task. We construct the initial clas-

sifier, and then for each iteration, solve for the indicator vec-

tor specifying which set of unlabeled data objects should be

annotated next. For unlabeled data with non-uniform anno-

tation costs, each resulting request will consist of a variable

2In the implementation, we need to add slack on T since with varying

annotation costs per example one can only hit the budget T as closely as

possible, but for clarity of presentation we omit it in the notation above.

Algorithm 1 Budgeted Batch Active Learning (BBAL)

Require: Labeled data - L, Unlabeled data - U ,

Current loss on unlabeled data - ǫL
i ,

Labeling costs - c = [c1, . . . , cu], Budget - T ,

Parameters - C, Cu, ζ.

1: Initialize ǫl+j = 0, for j = 1, . . . , 2u.

2: YU = {y1, . . . , y2u}, set as in Eqn. 5.

3: C(qold) = ∞, where C(·) denotes objective in Eqn. 7

4: repeat

5: q = solve linear program (ǫ, ǫL, c, T ) // Eqn. 9

6: [w, b] = svm(L ∪ (U, YU ), C ∪ qCu) // Eqn. 8

7: Compute ǫ using YU , w, and b.

8: C(qnew) = q.

9: until convergence.

Set qj = max(qj , qj+u), for j = 1, . . . , u.

10: return Set S∗ = ∪qj>0 xl+j , for j = 1, . . . , u.

number of items (images, video clips). Once these tasks

are completed (either sequentially, or in parallel by a team

of annotators), the labeled set is expanded accordingly, the

classifier is updated, and budgeted selection repeats. The

final output is the trained classifier.

4. Results

We demonstrate our approach with multiple visual

recognition applications. The main goal of our experiments

is to demonstrate the advantage of maximally utilizing bud-

gets of any size, and to validate the importance of using

the change in the classifier objective when choosing large

batches. To show these things, we consider three baselines:

• Passive selection: randomly chooses examples to la-

bel. To implement this on a budget, we randomly draw

from the unlabeled pool until the budget is exhausted.

• Myopic active batch learner (MAB): greedily takes

the examples closest to the margin whose summed an-

notation costs come in under budget. This is a batch-

mode extension of [2], a common approach for SVMs.

• Batch-mode active learner (BMAL): a state-of-the-art

approach that selects batches of a fixed size [12]. Like

our method, it considers an SVM objective, but it does

not include the model’s expected change during selec-

tion, and it ignores per-example annotation costs.

We emphasize that, to our knowledge, no existing method

allows batch selection on a budget, making these the best

three baselines to analyze.

Datasets and Implementation Details: We use three

publicly available benchmark datasets: SIVAL for object

recognition, Hollywood for activity recognition, and Corel

for CBIR. The first two consist of examples that require

variable effort to annotate, allowing us to study the advan-

tages of selecting requests to meet a budget. The third al-



Dataset
Annotation Cost (secs)

min max mean median total

SIVAL 4 202 31.9 32 6752

Hollywood 1.64 92.7 15.4 8.7 2476.7

Table 1. Distribution of annotation costs on SIVAL and HOHA.

lows us to make direct comparisons with a state-of-the-art

batch selection method for image retrieval.

The SIVAL dataset contains 1500 images, each labeled

with one of 25 object labels (e.g., gloves, apple). The clut-

tered images contain objects in a variety of poses and light-

ing conditions. We use the color and texture features pro-

vided by the dataset creators3, which gives a 30-d descriptor

for each of 30 regions per image. For this dataset, manual

effort per image is the time required for manual segmen-

tation; we use the cost data provided by [21], though our

recent work shows that the costs can be predicted using im-

age features alone [11].

The Hollywood dataset (HOHA) contains 444 video

samples with human actions from 32 movies [26]. Each

sample is labeled according to one or more of 8 action

classes (e.g., AnswerPhone, GetOutCar, HandShake). We

use the “clean” training set. For features, we use the au-

thors’ code to extract HoG-HoF descriptors around space-

time Harris interest points, and convert each action clip into

a bag-of-words, with 1000 words. We use the length of a

video-clip to measure the annotation effort, since a human

will watch the entire clip in order to identify which of the

actions are performed in it. Table 1 shows the distribution

of annotation costs on the two above datasets.

The Corel dataset contains 5,000 images from 50 dif-

ferent categories (e.g., antelope, butterfly, car, cat), as se-

lected by the authors of [12]. Each category contains 100

images. We use the features provided on the authors’ web-

site4, which consist of color moments, edge histograms, and

a wavelet-based texture feature.

For SIVAL, we use an RBF kernel with γ = 10−5,

which we set based on the feature dimension. For HOHA,

we use a χ2 RBF kernel on HoG and HoF, with parameters

as specified in [26]. We set the SVM penalty parameters as

C = 100 and Cu = 100 for all approaches, a large value

intended to emphasize correct classification of the selected

examples. We train and test all approaches in the one-vs-

all setting, and use the standard train-test splits. For SIVAL

and HOHA, our active learner’s initial training set consists

of five positive and five negative images per class, selected

at random; we use the remainder as the unlabeled pool. We

average all results over five such random selections. Since

the quality of the initial classifier varies across runs and cat-

egories, we omit error bars for clarity. Instead, please see

the supplementary file for all individual runs. 5.

3http://www.cs.wustl.edu/accio/
4http://www.cais.ntu.edu.sg/∼chhoi/SVMBMAL/
5http://www.cs.utexas.edu/∼svnaras/papers/budget-supplementary.pdf
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Figure 1. Results on the Hollywood dataset: example per-category

learning curves (first two are best, third is worst) and the average

results over all eight categories (bottom right plot) when actively

learning categories of human activity from video clips.

Learning Activities on a Budget. Figure 1 shows rep-

resentative (best and worst) learning curves for our method

and the passive and myopic baselines plotted against the

cost (annotation time) of the selected examples on the Hol-

lywood dataset. The budget T is set such that all the un-

labeled examples would be exhausted in about 20 batch

iterations. About 10-15 examples on average get chosen

per iteration. Note that average precision (AP) is plot-

ted against the effort required to obtain annotations on the

selected examples—not the number of queries—since the

videos vary in length and require variable time to annotate.

All three methods steadily improve upon the initial clas-

sifier, but at different rates with respect to the cost. In

general, a steeper learning curve indicates that a method is

learning most effectively from the supplied labels. For most

classes, our approach shows the most significant gains at a

lower cost, meaning that it is best suited for maximally uti-

lizing a budget. MAB is a bit better than random selection

for most cases, but is weaker than our method due to its fail-

ure to account for the examples’ annotation cost and poten-

tial redundancy. Our results on some actions (e.g., “get out

of car”) are more variable than others, which we attribute

to the fact that the training and test clips are from distinct

movies, and therefore vary a lot in terms of lighting, ap-

pearance, characters, etc. Overall, however, our approach

consistently produces better accuracy for lower annotation

cost, and outperforms the baselines on average over all eight

actions (bottom right plot in Figure 1).

Learning Objects on a Budget. Figure 2 shows cor-

responding results on the SIVAL dataset. The budget T is

set to 300 secs, again so that all unlabeled data would be

exhausted in ∼20 iterations. Our approach is consistently

better than both baselines, as seen in the bottom right plot.
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Figure 2. Results on the SIVAL dataset: example learning curves

(first two are best, third is worst) and the average over all 25 cate-

gories (bottom right plot) when actively learning object categories.

For some categories (such as “dirtyworkgloves”), none of

the approaches improve with more labels, apparently due

to those objects’ non-descript texture/color. While the dif-

ferences between the approaches may appear to be smaller

that what we see for HOHA, they are consistent and signif-

icant considering that the results are averaged over five ran-

dom initializations and 25 categories. Moreover, to achieve

about 90% of the ultimate accuracy level possible on this

dataset (0.7 AUROC), our method requires notably less

cost: about 43% less annotation cost than the passive se-

lector, and 20% less than the myopic selector.

Figure 3 shows an example batch selection made by our

approach and the myopic baseline. The example illustrates

the main advantage of our approach: we are able to select

both less expensive and more informative examples, while

sticking within the allowed budget as closely as possible.

Varying the Budget Size. Next we study the impact of

increasing budget sizes. We expect the far-sightedness of

our approach to offer particular advantages for larger bud-

gets. For this experiment, we vary the size of the budget,

and measure the accuracy of our method and the baselines

at a fixed annotation cost for each budget (approx. 1
4 of the

total unlabeled pool’s annotation cost). The range of budget

sizes tested was set so as to exhaust all unlabeled data in

about 10, . . . , 40 iterations.

Figure 4 shows the results, for two example categories

from SIVAL and HOHA (see supp. file for all classes). We

include a minimal budget size to illustrate that for a budget

allowing only ≈a single item to be selected, MAB and our

approach would be almost equivalent (see leftmost points

on both plots). As expected, for larger budgets, the my-

opic choices drop in accuracy, sometimes below the random

baseline. Passive selection’s accuracy is stable across bud-

get sizes since it is simply random. Our approach shows

Figure 3. Example batch selection made by our approach (left) and

the myopic baseline (right) for the SIVAL “bluescrunge” object on

the first iteration, with a budget of 60 secs.
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Figure 4. Active learning performance as a function of increasing

budget size. The quality of our far-sighted selections remains more

stable for larger budgets.

the least degradation—a consequence of considering how

the classifier changes if we were to obtain the most proba-

ble labels on the candidate examples for selection. This is a

key result, given that real recognition systems drawing on a

pool of annotators must be able to pick a large batch of jobs

wisely in order to farm them out in parallel.

Comparison to State-of-the-Art Batch Selection. Next

we provide comparisons with the state-of-the-art batch-

mode active learning (BMAL) method of [12] on a CBIR

task with Corel. The two BMAL variants use quadratic

programming (SVM
SS(QP )
BMAL ) and combinatorial optimiza-

tion (SVM
SS(CO)
BMAL ). While their approach is intended for

fixed-size batches, and ours allows variable-sized batches,

we can still test our method in this setting since it is a special

case (i.e., budget=batch size). We replicate the experimen-

tal setup given by the authors, using 200 random queries,

and applying the same kernel [27], SVM parameters, and

scoring criteria (see [12] for details).

Table 2 shows the results. Our results are comparable,

if not better, than the state-of-the-art, and the gains are a

bit more apparent with larger batch sizes. We attribute our

gains to our method’s inclusion of the expected classifier

change. (See [12] for more results from other active se-

lection baselines (including [2, 14]), all of which generally

underperform BMAL, and thus our method, for this data.)

Impact of Budgets Vs. Fixed-Size Batches. Finally, we

examine the impact of being able to select variable-sized

batches according to a fixed budget, as compared to fixing



Precision
Batch Size

5 10 15 20 25 30

Ours 0.620 0.734 0.809 0.853 0.888 0.905

SVM
SS(QP )
BMAL

0.640 0.718 0.798 0.835 0.860 0.886

SVM
SS(CO)
BMAL

0.622 0.717 0.776 0.835 0.868 0.889

Recall
Batch Size

5 10 15 20 25 30

Ours 0.321 0.371 0.417 0.452 0.477 0.503

SVM
SS(QP )
BMAL 0.332 0.373 0.423 0.452 0.468 0.490

SVM
SS(CO)
BMAL

0.321 0.377 0.412 0.447 0.471 0.493

Table 2. Corel results. Top: The average precision of the top 20

retrievals with different batch sizes. Bottom: The average recall

of the top 100 retrievals with different batch sizes (evaluation done

as prescribed in [12]).
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Figure 5. Comparison of active batch selections when using our

budgeted approach, vs. restricting selections to a fixed batch size.

a batch size. We implement a QP-solver for the BMAL

approach [12] and run experiments on SIVAL and HOHA.

Since the BMAL baseline must choose k examples at each

iteration (regardless of the annotation cost), we set k to the

budget T divided by the dataset’s mean cost.

Figure 5 shows the results. On both datasets, our bud-

geted selection performs better than a fixed-batch choice.

This reinforces our claim that the higher the annotation cost

variability among the unlabeled data, the more crucial it is

to optimize selections for the given budget. Our method es-

sentially picks a mixture of less/more expensive examples

so as to best utilize the allowed annotation budget, whereas

a method limited to choosing fixed-size batches is misled

into choosing a seemingly informative batch that may be

overly expensive in reality.

5. Conclusions

In conclusion, in this work we formalize the problem

of far-sighted active learning on a budget, and propose a

new method for optimally selecting a set of examples for

a support vector machine classifier under these conditions.

We provide an efficient iterative minimization technique

that balances candidate examples’ labeling costs and value

when selected in batches. Experiments on three benchmark

datasets show the practical advantages when compared to

passive and myopic active alternatives, as well as an exist-

ing active batch selection baseline. Overall the results are

quite encouraging and suggest that the proposed approach

enables wise use of budgeted supervision.
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