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Abstract

Active learning and crowdsourcing are promising ways

to efficiently build up training sets for object recognition,

but thus far techniques are tested in artificially controlled

settings. Typically the vision researcher has already deter-

mined the dataset’s scope, the labels “actively” obtained

are in fact already known, and/or the crowd-sourced col-

lection process is iteratively fine-tuned. We present an ap-

proach for live learning of object detectors, in which the

system autonomously refines its models by actively request-

ing crowd-sourced annotations on images crawled from the

Web. To address the technical issues such a large-scale

system entails, we introduce a novel part-based detector

amenable to linear classifiers, and show how to identify its

most uncertain instances in sub-linear time with a hashing-

based solution. We demonstrate the approach with exper-

iments of unprecedented scale and autonomy, and show it

successfully improves the state-of-the-art for the most chal-

lenging objects in the PASCAL benchmark. In addition, we

show our detector competes well with popular nonlinear

classifiers that are much more expensive to train.

1. Introduction

Object detection is a fundamental vision problem: given

an image, which object categories are present, and where?

Ongoing research is devoted to developing novel represen-

tations and classification algorithms in support of this task,

and challenge datasets encourage further progress [1, 2, 3,

4, 5]. Today’s best-performing detection methods employ

discriminative learning together with window-based search,

and assume that a large number of cleanly labeled training

examples are available. For example, thousands of bound-

ing box annotations per category is standard.

Given the substantial human effort required to gather

good training sets—as well as the expectation that more

data is almost always advantageous—researchers have be-

gun to explore novel ways to collect labeled data. Both

active learning and crowd-sourced labeling are promising

ways to efficiently build up training sets for object recog-

nition. Active learning work shows how to minimize hu-

man effort by focusing label requests on those that ap-

pear most informative to the classifier [6, 7, 8, 9, 10],

whereas crowd-sourcing work explores how to package an-

notation tasks such that they can be dispersed effectively

online [11, 12, 13, 14, 15]. The interesting questions raised

in these areas—such as dealing with noisy labels, measur-

ing reliability, mixing strong and weak annotations—make

it clear that data collection is no longer a mundane neces-

sity, but a thriving research area in itself.

However, while ostensibly intended to distance algo-

rithm developers from the data collection process, in prac-

tice existing techniques are tested in artificially controlled

settings. Specifically, we see four limiting factors. First,

previous work uses “sandbox” datasets, where the vision

researcher has already determined the dataset’s source and

scope, meaning there is a fixed (and possibly biased) set of

images that will even be considered for labeling. In fact,

active learning methods have only been tested on sandbox

data where the true labels are really known, and merely

temporarily withheld from the selection algorithm. These

common simulations likely inflate the performance of both

active and passive learners, since anything chosen for label-

ing is relevant. Second, nearly all work targets the active

image classification problem—not detection—and so im-

ages in the unlabeled pool are artificially assumed to contain

only one prominent object. Third, most crowd-sourced col-

lection processes require iterative fine-tuning by the algo-

rithm designer (e.g., revising task requirements, pruning re-

sponses, barring unreliable Mechanical Turkers) before the

data is in usable form. Fourth, the computational complex-

ity of the active selection process is generally ignored, yet it

is critical when running a live system to avoid keeping the

human annotators idle. Thus, it is unknown to what extent

current approaches could translate to real settings.

Our goal is to take crowd-sourced active annotation out

of the “sandbox”. We present an approach for live learn-

ing of object detectors, in which the system directly inter-
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acts with human annotators online and iteratively poses an-

notation requests to refine its models. Rather than fill the

data pool with some canned dataset, the system itself gath-

ers possibly relevant images via keyword search (we use

Flickr). It repeatedly surveys the data to identify unlabeled

sub-windows that are most uncertain according to the cur-

rent model, and generates tasks on MTurk to get the cor-

responding bounding box annotations. After an annotation

budget is spent, we evaluate the resulting detectors both on

benchmark data, as well as a novel test set from Flickr. No-

tably, throughout the procedure we do not intervene with

what goes into the system’s data pool, nor the annotation

quality from the hundreds of online annotators.

To make the above a reality requires handling some im-

portant technical issues. Active selection for window-based

detection is particularly challenging since the object extents

(bounding boxes) are unknown in the unlabeled examples;

naively one would need to evaluate all possible windows

within the image in order to choose the most uncertain. This

very quickly leads to a prohibitively large unlabeled pool

to evaluate exhaustively. Thus, we introduce a novel part-

based detector amenable to linear classifiers, and show how

to identify its most uncertain instances in sub-linear time

with a hashing-based solution we recently developed.

We show that our detector strikes a good balance be-

tween speed and accuracy, with results competitive with and

even exceeding the state-of-the-art on the PASCAL VOC.

Most importantly, we show successful live learning in an

uncontrolled setting. The system learns accurate detectors

with much less human effort than strong baselines that rely

on human-verified keyword search results.

2. Related Work

Object detection has received various treatments in the

literature; see [5] and references therein for an overview.

Currently window-based approaches based on gradient fea-

tures and subwindow parts provide state-of-the-art results

using discriminative classifiers. A known limitation, how-

ever, is their fairly significant computational expense, due

both to the need to search exhaustively through all windows

in the image, as well as the classifiers’ complexity (e.g.,

SVMs with nonlinear kernels or latent variables [3, 2]).

Various ways to reduce detection time have been

explored, including cascades [3], branch-and-bound

search [4], or jumping windows [16]. To reduce classifier

training and testing costs, simpler linear models are

appealing. While linear models tend to underperform

with common representations (e.g., see tests in [3, 17]),

recent work in image classification shows very good

results when also incorporating sparse coding and feature

pooling [18, 19, 17]. We propose a part-based object model

that exploits a related representation, and show it to be

competitive with state-of-the-art detection results. To our

knowledge, no previous work considers sparse coding and

linear models for object detection.

Active learning has been shown to better focus annota-

tion effort for image recognition tasks [6, 7, 9] and region

labeling [8, 10]. However, no previous work uses active

learning to train a window-based detector. To do so intro-

duces major scalability issues, which we address with a new

linear detector combined with a hashing algorithm [20] for

sub-linear time search of the unlabeled pool. Further, all

previous work tests active selection only in a sandbox.

Researchers have investigated issues in annotation

tools and large-scale database collection for recognition.

Keyword-based search is often used for dataset creation,

and several recent efforts integrate crowd-sourced label-

ing [11, 12, 15] or online and incremental learning [21].

Even with a human in the loop, annotation precision varies

when using Web interfaces and crowds, and so some re-

search explores ways to automatically provide quality assur-

ance [13, 14]. Other work attempts to directly learn object

models from noisy keyword search (e.g., [22, 21]); however,

such methods assume a single prominent object of interest

per image, whereas for detection we will have cluttered can-

didate images that require a bounding box to identify the

object of interest.

Overall, previous active learning methods focus on im-

age classification, and/or demonstrate results under con-

trolled settings on prepared datasets of modest scale. Ours

is the first complete end-to-end approach for scalable, auto-

matic online learning of object detectors.

3. Approach

Our goal is to enable online active crowd-sourced object

detector training. Given the name of a class of interest, our

system produces a detector to localize novel instances using

automatically obtained images and annotations. To make

this feasible, we first propose a part-based linear SVM de-

tector, and then show how to identify its uncertain examples

efficiently using a hashing scheme.

3.1. Object Representation and Linear Classifier

We first introduce our part-based object model. Our goal

is to design the representation such that a simple linear clas-

sifier will be adequate for robust detection. A linear model

has many complexity advantages important to our setting:

i) SVM training requires time linear in the number of train-

ing examples, rather than cubic [23], ii) classification of

novel instances requires constant time rather than growing

linearly with the number of training examples, iii) exact in-

cremental classifier updates are possible, which makes an it-

erative active learning loop practical, and iv) hash functions

enable sub-linear time search to map a query hyperplane to

its nearest points according to a linear kernel [20].
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Figure 1. Our part-based object representation.

Inspired by recent findings in sparse coding for image

classification [18, 19, 17], we explore a detection model

based on sparse coding of local features combined with a

max pooling scheme. Previous representations pool coded

SIFT features in a single global window or in a fixed class-

independent hierarchy of grid cells (i.e., a spatial pyramid

structure). While sufficient for whole-image classification,

we instead aim to represent an object separately from its

context, and to exploit its part-based structure with class-

dependent subwindow pooling.

To this end, we propose an object model con-

sisting of a root window r, multiple part windows

{p1, . . . , pP } that overlap the root, and context windows

{c1, . . . , cC} surrounding it. See Figure 1. Let O =
[r, p1, . . . , pP , c1, . . . , cC ] denote a candidate object config-

uration within an image, and let φ(W ) denote the sparse

feature encoding for local image descriptors extracted from

a given subwindow W (to be defined below). The detector

scores a candidate configuration as a simple linear sum:

f(O) = wT φ(O) (1)

= wrφ(r) +

P
∑

i=1

wpi
φ(pi) +

C
∑

i=1

wci
φ(ci),

where w denotes the learned classifier weights, which we

obtain with SVM training. We next flesh out the window de-

scriptions; Sec. 3.2 explains how we obtain candidate root

placements.

Window descriptions Given a novel test image, we first

extract local image descriptors; we use a dense multi-scale

sampling of SIFT in our implementation. Each window

type (r, pi, or cj) uses these features to create its encoding

φ(·). The root window provides a global summary of the

object appearance, and is invariant to spatial translations of

features within it.

Similarly, each part window summarizes the local fea-

tures within it, discarding their positions; however, the lo-

cation of each part is defined relative to the current root,

and depends on the object class under consideration (i.e.,

bicycles and cars each have a different configuration of the

pi windows). Thus, they capture the locations and spatial

configurations of the most important parts of the object.

We train with the part locations and bounds learned by the

detector in [2] on an initial labeled set; alternatively, they

could be requested once directly from annotators.

The context windows incorporate contextual cues sur-

rounding the object, such as the presence of “sky”,

“ground”, “road”, etc., and also help discard poorer candi-

date windows that cover only parts of objects (in which case

object features spill into the context window). We create the

context windows using a 3× 1 partition of r’s complement,

as shown in the top right of Figure 1.

Feature encoding Each window is represented using a

nonlinear feature encoding based on sparse coding and

max-pooling, which we refer to as Sparse Max Pooling

(SMP). The SMP representation is related to the well-

known bag-of-features (BoF); however, unlike BoF, each

component local descriptor is first encoded as a combi-

nation of multiple visual words, and the weights are then

pooled within a region of interest using the max function.

Offline, we cluster a large corpus of randomly selected

features to obtain a dictionary of |V | visual words: V =
[v1, . . . , v|V |], where each column vi ∈ ℜ128 is a clus-

ter center in SIFT space. For any window W (whether

root/part/context), let F = {fi}
|F |
i=1

be the set of local fea-

tures falling within it, where each fi ∈ ℜ128 is a SIFT

descriptor. We represent this window with a sparse |V |-
dimensional vector, as follows.

First, each feature fi is quantized into a |V |-dimensional

sparse vector si that approximates fi using some existing

sparse coding algorithm and the dictionary V , that is, fi ≈
siV . Taking this encoding for every fi as input, the SMP

representation of W is given by:

φ(W ) = [ φ1, . . . , φ|V | ], where (2)

φj = max (si(j)) , i = 1, . . . , |F |,

for j = 1, . . . , |V |, and si(j) is the j-th dimension of the

sparse vector encoding the i-th original feature, fi. Finally,

we normalize φ(W ) by its L2 norm.1

The rationale behind the SMP window encoding is

twofold: the sparse coding gives a fuller representation of

the original features by reflecting nearness to multiple dic-

tionary elements (as opposed to BoF’s usual hard vector

quantization), while the max pooling gives better discrim-

inability amidst high-variance clutter [17]. See [17, 18]

for useful comparisons between various sparse coding ap-

proaches, which shows their clear advantage when com-

bined with a linear kernel as compared to the popular BoF.

Relationship to existing detection models Our model in-

tentionally strikes a balance between two recent state-of-

1We use Locality-constrained Linear Coding (LLC) [19] to obtain the

sparse coding, though other algorithms could also be used for this step.

1451



+ +

Hard VQ 

+avg pooling

flocal features,

discard locs per window

(a) Spatial pyramid model (SP)

++

root parts deformations

dense gradients at fixed locs within window

(b) Latent deformable part model (LSVM)

Sparse code

+max pooling

root parts

+

 (p1) … (pP) (r)

local features,

discard locs per window
 ( )

(c) Proposed model

Figure 2. Sketch to illustrate contrasts with related existing models. See text for details.

the-art detection models: i) a nonlinear SVM with a spatial

pyramid (SP) in which each grid cell is a histogram of un-

ordered visual words [3], and ii) a latent SVM (LSVM) with

a root+deformable part model in which each part is a rigid

histogram of ordered oriented gradients [2]. See Figure 2.

On the one hand, the SP model is robust to spatial trans-

lations of local features within each grid cell. On the

other hand, its nonlinear kernels (required for good perfor-

mance [3]) makes the classifier quite expensive to train and

test, and rigid class-independent bins may fail to capture

the structure of the best parts on an object (see Fig. 2(a)). In

contrast, the LSVM model can robustly capture the parts,

since it learns multiple part filters that deform relative to the

root. However, its dynamic programming step to compute

parts’ alignment makes it expensive to train. Furthermore,

its use of the spatially dense gradient histograms for both

the root and parts make them less tolerant to internal shifts

and rotations (see Fig. 2(b)).

Our model attempts to incorporate positive aspects of the

above two models, while maintaining a much lower compu-

tational cost. In particular, we have class-specific part con-

figurations, like [2], but they are fixed relative to the root,

like [3]. Our SMP-based encoding is robust to shifts within

the part and object windows, thereby tolerating some de-

formation to the exact part placement without needing the

additional DP alignment step during detection. In short,

by utilizing a part-based representation and a linear clas-

sifier, our approach provides a very good trade-off in terms

of model complexity and accuracy.

3.2. Generating Candidate Root Windows

So far we have defined a representation and scoring func-

tion for any candidate window. Now we discuss how to

generate the candidates, whether in novel test images or un-

labeled images the system is considering for annotation. A

thorough but prohibitively expensive method would be the

standard sliding window approach; instead, we use a grid-

based variant of the jumping window method of [16, 24].

The jumping window approach generates candidate win-

dows with a Hough-like projection using visual word

matches, and prioritizes these candidates according to a

measure of how discriminative a given word and coarse lo-

cation is for the object class (see Figure 3). First, each root

window in the training images is divided into an N × M

grid. Let Wloc(r) denote a root window’s position and

Figure 3. Illustration of jumping window root candidates. Grid cells serve

to refine the priority given to each box (but do not affect its placement).

Here, location g = 1 has higher priority than g = 4 for visual word v = ⋆

since it appears more consistently in the training images (left two images).

scale. Given a training window r and a visual word v oc-

curring at grid position g ∈ {1, . . . , NM}, we record the

triplet (v, g, Wloc(r)). We build a lookup table indexed by

the v entries for all training examples. Then, given a test

image, for each occurrence of a visual word v, we use the

lookup table to retrieve all possible Wloc(r)’s, and project a

bounding box in the test image relative to that v’s position.

Note, candidates can vary in aspect ratio and scale.

The grid cell g in each triple is used to assign a priority

score to each candidate, since we may not want to exam-

ine all possible candidates mapped from the lookup table.

Specifically, we score a given pair (v, g) based on how pre-

dictive it is for the true object bounding box across the train-

ing set: P (v, g) is the fraction of the occurrences of word v

that appear at grid location g. This function gives a higher

score to bounding boxes where the visual word occurs con-

sistently across positive training examples at a particular po-

sition (see Figure 3).

Given a test image, we take the top K candidate jumping

windows based on their priority scores. The detector is run

only on these boxes. In experiments, we obtain 95% recall

on most categories when taking just K = 3, 000 candidates

per test image. The same level of recall would require up to

105 bounding boxes if using sliding windows (see [3]).

3.3. Active Selection of Object Windows

We initialize our online active learning system with a

linear SVM trained with a small number of labeled exam-

ples for the object. Then, it crawls for a pool of potentially

relevant unlabeled data using keyword search with the ob-

ject name (i.e., it downloads a set of images tagged ‘dog’

when learning to detect dogs). We want to efficiently de-

termine which images among those retrieved should be la-

beled next by the human annotators. As an active learning

criterion, we use the “simple margin” selection method for
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SVMs [25], a widely used criterion that seeks points that

most reduce the version space. Given an SVM with hy-

perplane normal w and an unlabeled pool of data UO =
{φ(O1), . . . , φ(On}), the point that minimizes the distance

to the current decision boundary is selected for labeling:

O∗ = arg minOi∈UO
|wT φ(Oi)|.

A naive application of this criterion entails computing

the classifier response on all unlabeled data, ranking them

by |wT φ(Oi)|. However, even with a linear classifier, ex-

haustively evaluating all unlabeled examples at each iter-

ation is prohibitively expensive. Whereas previous active

learning work is generally unconcerned about the amount of

time it actually takes to compute the next labeling request,

it becomes a real issue when working out of the sandbox,

since we have live annotators awaiting the next labeling jobs

and massive unlabeled data pools. In particular, since we

need to apply the active selection function at the level of

the object, not the entire image, we have an enormous num-

ber of instances—all bounding boxes within the unlabeled

image data. Even using jumping windows, thousands of im-

ages yield millions of candidates. Thus, a simple linear scan

of all unlabeled data is infeasible.

Therefore, we adopt our hyperplane-hashing algo-

rithm [20] to identify the most promising candidate win-

dows in sub-linear time. The algorithm maps inputs to bi-

nary keys using a randomized hash function that is locality-

sensitive for the angle between the hyperplane normal and

a database point. Given a “query hyperplane”, one can hash

directly to those points that are nearest to the hyperplane,

with high probability.

Formally, let UI denote the set of unlabeled images,

and UO denote the pool of candidate object windows ob-

tained using the jumping window predictor on UI . Note

that |UO| = K × |UI |. The locality-sensitive hash family H
generates randomized functions with two-bit outputs:

hH(z) =

{

hu,v(φ(Oi), φ(Oi)), if z is a database vector,

hu,v(w,−w), if z is a query hyperplane,

where the component function is defined as

hu,v(a, b) = [sign(uT a), sign(vT b)], (3)

sign(uT a) returns 1 if uT a ≥ 0, and 0 otherwise, and u

and v are sampled from a standard multivariate Gaussian,

u, v ∼ N (0, I). These functions guarantee high probabil-

ity of collision for a query hyperplane and the points nearest

to its boundary. The two-bit hash limits the retrieved points’

deviation from the perpendicular by constraining the angle

with respect to both w and −w. See [20] for details.

We use these functions to hash the crawled data into the

table.2 Then, at each iteration of the active learning loop, we

2Hyperplane hashes can be used with existing approximate near-

neighbor search algorithms; we use Charikar’s formulation, which guar-

antees the probability with which the nearest neighbor will be returned.

Figure 4. MTurk interface to obtain bboxes on actively selected examples.

hash the current classifier as a query, and directly retrieve

examples closest to its decision boundary. We search only

those examples, i.e., we compute |wT φ(Oi)| = |f(Oi)| for

each one, and rank them in order of increasing value. Fi-

nally, the system issues a label request for the top T images

under this ranking. Since we only need to evaluate the clas-

sifier for examples that fall into a particular hash bucket—

typically less than 0.1% of the total number of unlabeled

examples—this strategy combined with our new detector

makes online selection from large datasets feasible.

3.4. Online Annotation Requests

To automatically obtain annotations on the actively se-

lected examples, our system posts jobs on Mechanical Turk,

where it can pay workers to provide labels. The system

gathers the images containing the most uncertain bounding

boxes, and the annotators are instructed to use a rectangle-

drawing tool to outline the object of interest with a bound-

ing box (or else to report that none is present). We ask an-

notators to further subdivide instances into “normal”, “trun-

cated”, or “unusual”, consistent with PASCAL annotations,

and to flag images containing more than 3 instances. Fig-

ure 4 shows the annotation interface.

While MTurk provides easy access to a large number of

annotators, the quality of their labels varies. Thus, we de-

sign a simple but effective approach to account for the vari-

ability. We issue each request to 10 unique annotators, and

then cluster their bounding boxes using mean shift to obtain

a consensus. We keep only those clusters with boxes from

more than half of the annotators. Finally, we obtain a single

representative box from each cluster by selecting the one

with the largest mean overlap with the rest.

Note how each image consists of thousands of unla-

beled window instances, each of which serves as a candidate

query; once a single image annotation is obtained, however,

it tells us the labels for all windows within it.

3.5. Training the Detector

Training our detector entails learning the linear SVM

weights in Eqn. 2 to distinguish windows that contain the

object of interest from all others. To limit the number of

negative windows used to train, we mine for “hard” nega-

tives: at each iteration, we apply the updated classifier to the

newly labeled images, and add the 10 top-scoring windows

as negatives if they overlap the target class by < 20%.
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classif parts feats cands aero. bicyc. bird boat bottl bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon. Mean

Ours linear yes single jump 48.4 48.3 14.1 13.6 15.3 43.9 49.0 30.7 11.6 30.3 13.3 21.8 43.6 45.0 18.2 11.1 28.8 33.0 47.7 43.0 30.5

BoF SP linear no single jump 30.4 43.1 6.9 3.5 10.8 35.8 45.0 17.7 11.5 24.6 3.5 18.0 43.5 44.0 15.3 1.5 19.1 14.7 35.7 34.9 23.0

LLC SP linear no single jump 35.9 46.7 6.4 6.3 16.5 45.6 49.8 26.7 12.5 27.3 6.8 18.2 44.9 45.0 18.2 4.6 23.2 22.6 41.3 42.0 27.0

LSVM+HOG [2] nonlinear yes single slide 32.8 56.8 2.5 16.8 28.5 39.7 51.6 21.3 17.9 18.5 25.9 8.8 49.2 41.2 36.8 14.6 16.2 24.4 39.2 39.1 29.1

SP+MKL [3] nonlinear no multiple jump 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 32.1

Table 1. Average precision compared to a spatial pyramid BoF baseline (BoF SP), a sparse coding max pooling spatial pyramid baseline modeled after [19]

(LLC SP), and two state-of-the-art approaches [2, 3] on the PASCAL VOC, where all methods are trained and tested on the standard benchmark splits.
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Figure 5. Summary of our system for live learning of object detectors.

We can now actively train an object detector automati-

cally using minimal crowd-sourced human effort. To recap,

the main loop consists of using the current classifier to gen-

erate candidate jumping windows, storing all candidates in

a hash table, querying the hash table using the hyperplane

classifier, giving the actively selected examples to online

annotators, taking their responses as new ground truth la-

beled data, and updating the classifier. See Figure 5.

4. Results

The goal of our experiments is three-fold. First, we com-

pare the proposed detector to the most closely related state-

of-the-art techniques. Second, we validate our large-scale

active selection approach with benchmark data. Third, we

deploy our complete live learning system with crawled im-

ages, and compare to strong baselines that request labels for

the keyword search images in a random sequence. We use

two datasets: the PASCAL VOC 2007, and a new Flickr

dataset (details below).

Implementation details We use dense SIFT at three

scales (16, 24, 32 pixels) with grid spacing of 4 pixels, for

30K features per image. We obtain |V | = 56, 894 visual

words with two levels of hierarchical k-means on a sam-

ple of training images. We use the fast linear SVM code

svm perf [23], C = 100. We use the LLC code [19],

and set k, the number of non-zero values in the sparse vec-

tor si to 5, following [19]. We use P = 6 parts per ob-

ject from each of a 2-mixture detector from [2] trained on

PASCAL data, take T = 100 instances per active cycle,

set K = 3000, and N, M = 4. We fix Nρ = 500 and

ǫ′ = 0.01 for the hash table [20]. During detection we run

non-max suppression on top ranked boxes and select 10 per

image. We score all results with standard PASCAL metrics

and train/test splits.

4.1. Comparison to State­of­the­Art Detectors

First we compare our detector to the algorithms with the

current best performance on VOC 2007 benchmark of 20

objects, as well as our own implementation of two other

relevant baselines.

Table 1 shows the results. The first three rows all use the

same original SIFT features, a linear SVM classifier, and

the same jumping windows in the test images. They differ,

however, in the feature coding and pooling. The BoF SP

baseline maps the local features to a standard 3-level spatial

pyramid bag-of-words descriptor with L2-normalization.

The LLC SP baseline applies sparse coding and max pool-

ing within the spatial pyramid cells. LLC SP is the method

of [19]; note, however, we are applying it for detection,

whereas the authors propose their approach for image clas-

sification.

The linear classifier with standard BoF coding is the

weakest. The LLC SP baseline performs quite well in com-

parison, but its restriction to a global spatial pyramid struc-

ture appears to hinder accuracy. In contrast, our detector

improves over LLC SP noticeably for most objects (com-

pare rows 1 and 3), likely due to its part windows.

Our detector is competitive with both of the state-of-

the-art approaches discussed in Section 3.1: SP+MKL [3],

which uses a cascade of classifiers that culminates with a

learned combination of nonlinear SVM kernels over mul-

tiple feature types, and LSVM+HOG [2], which uses the

latent SVM and deformation models for parts. In fact, our

detector outperforms all existing results for 6 of the 20 ob-

jects, improving the state-of-the-art. At the same time, it is

significantly faster to train (about 50 to 600 times faster; see

Table 4).

The classes where we see most improvements seem

to make sense, too: our approach outperforms the rigid

spatial pyramid representation used in [3] for cases with

more class-specific part structure (aeroplane, bicycle, train),

while it outperforms the dense gradient parts used in [2] for

the more deformable objects (dog, cat, cow).
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Figure 6. Active detector training on PASCAL. Our large-scale active se-

lection yields steeper learning curves than passive selection, and reaches

peak state-of-the-art performance using only ∼30% of the data.

aeroplane bird boat cat dog sheep sofa train

Ours 48.4 15.8∗ 18.9∗ 30.7 25.3∗ 28.8 33.0 47.7

Previous best 37.6 15.3 16.8 30.0 21.5 23.9 28.5 45.3

Table 2. Categories for which our method yields the best AP on PASCAL

VOC 2007, compared to any result we found in the literature. (∗means

extra Flickr data automatically obtained by our system was used to train.)

4.2. Active Detector Training on PASCAL

We next compare our active selection scheme to a pas-

sive learning baseline that randomly selects images for

bounding box annotation. We select six representative cate-

gories from PASCAL: we take two each from those that are

“easier” (>40 AP), “medium” (25-40 AP) and “hard” (0-25

AP) according to the state-of-the-art result (max of rows 4

and 5 in Table 1). We initialize each object’s classifier with

20 examples, and then let the remainder of the training data

serve as the unlabeled pool, a total of 4.5 million examples.

At each iteration, both methods select 100 examples, add

their true bounding boxes (if any) to the labeled data, and

retrain. This qualifies as learning in the “sandbox”, but is

useful to test our jumping window and hashing-based ap-

proach. Furthermore, the natural cluttered images are sig-

nificantly more challenging than data considered by prior

active object learning approaches, and our unlabeled pool is

orders of magnitude larger.

Figure 6 shows the results. We see our method’s clear

advantage; the steeper learning curves indicate it improves

accuracy on the test set using fewer labels. In fact, in

most cases our approach reaches state-of-the-art perfor-

mance (see markers above 5000 labels) using only one-third

of the available training data.

4.3. Online Live Learning on Flickr

Finally, we deploy our complete live learning system,

where new training data is crawled on Flickr. We consider

all object classes for which state-of-the-art AP is less than

25.0 (boat, dog, bird, pottedplant, sheep, chair) in order to

provide the most challenging case study, and to seek im-

provement through live learning where other methods have

struggled most. To form the Flickr test set, we download
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Figure 7. Live learning results on PASCAL test set.

bird boat chair dog pottedplant sheep

Flickr-crawled 2936 3138 2764 1831 1566 1570

Flickr-test 655 628 419 780 364 820

Table 3. Number of images in the crawled data and the new Flickr test set.

images tagged with the class names dated in 2010; when

running live training, our system is restricted to images

dated in 2009. See Table 3 for the data stats.

We compare to (1) a Keyword+image baseline that uses

the same crawled image pool, but randomly selects images

to get annotated on MTurk, and (2) a Keyword+window

baseline that randomly picks jumping windows to get la-

beled. These are strong baselines since most of the images

will contain the relevant object. In fact, they exactly repre-

sent the status quo approach, where one creates a dataset by

manually pruning keyword search results. We initialize all

methods with the PASCAL-trained models (5000 training

images), and run for 10 iterations.

Live learning applied to PASCAL test set Figure 7

shows the results. For four of the six categories, our sys-

tem improves test accuracy, and outperforms the keyword

approaches. The final AP also exceeds the current state-of-

the-art for three categories (see Table 2, comparing to best

of [2, 3]). This is an exciting result, given the size of the un-

labeled pools (∼3 million examples), and the fact that the

system refined its models completely automatically.

However, for two classes (chair, sheep), live learning de-

creases accuracy. Of course, more data cannot guarantee

improved performance on a fixed test set. We suspect the

decline is due to stark differences in the distribution of PAS-

CAL and Flickr images, since the PASCAL dataset creators

do some manual preparation and pruning of all PASCAL

data. Our next result seems to confirm this.

Live learning applied to Flickr test set Figure 8 shows

the results on the new Flickr test set, where we apply the

same live-learned models from above. While this test set

appears more challenging than PASCAL, the improvements

made by our approach are dramatic—both in terms of its

absolute climb, as well as its margin over the baselines.

In all, the results indicate that our large-scale live learn-

ing approach can autonomously build models appropriate
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Figure 8. Live learning results on Flickr test set.

selected box selected box selected box

selected box

selected box

selected box

Figure 9. Selections by our live approach (top), Keyword+image (bottom).

for detection tasks with realistic and unbiased data. Fig-

ure 9 shows selections made by either method when learn-

ing “boat”, illustrating how ours focuses human attention

among the crawled tagged images.

4.4. Computation Time

Table 4 shows the time complexity of each stage, and il-

lustrates our major advantages for selection and retraining

compared to existing strong detectors. Our times are based

on a dual-core 2.8 GHz CPU, comparable to [2, 3]. Our

jumping window+hashing scheme requires on average 2-3

seconds to retrieve 2,000 examples nearest the current hy-

perplane, and an additional 250 seconds to rank and select

100 images to query. In contrast, a linear scan over the en-

tire unlabeled pool would require about 60 hours.

The entire online learning process requires 45-75 min-

utes per iteration: 5-10 min. to retrain, 5 min. for selection,

and ∼1 hour to wait for the MTurk annotations to come

back (typically 50 unique workers gave labels per task).

Thus, waiting on MTurk responses takes the majority of the

time, and could likely be reduced with better payment. In

comparison, the same selection with [2, 3] would require

about 8 hours to 1 week, respectively.

5. Conclusions

Our contributions are i) a novel efficient part-based lin-

ear detector that provides excellent performance, ii) a jump-

ing window and hashing scheme suitable for the proposed

detector that retrieves relevant instances among millions of

candidates, and iii) the first active learning results for which

both data and annotations are automatically obtained, with

minimal involvement from vision experts. Tying it all to-

gether, we demonstrated an effective end-to-end system on

two challenging datasets.

Active selection Training Detection per image

Ours + active 10 mins 5 mins 150 secs

Ours + passive 0 mins 5 mins 150 secs

LSVM [2] 3 hours 4 hours 2 secs

SP+MKL[3] 93 hours > 2 days 67 secs

Table 4. Run-time comparisons. Our detection time is mostly spent pooling

the sparse codes. Active times are estimated for [2, 3] models based on

linear scan. Our approach’s efficiency makes live learning practical.
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