
1

Look-ahead before you leap: end-to-end active
recognition by forecasting the effect of motion

Dinesh Jayaraman, UT Austin, and Kristen Grauman, UT Austin

Abstract—Visual recognition systems mounted on autonomous
moving agents face the challenge of unconstrained data, but si-
multaneously have the opportunity to improve their performance
by moving to acquire new views of test data. In this work, we
first show how a recurrent neural network-based system may be
trained to perform end-to-end learning of motion policies suited
for the “active recognition” setting. Further, we hypothesize that
active vision requires an agent to have the capacity to reason
about the effects of its motions on its view of the world. To
verify this hypothesis, we attempt to induce this capacity in our
active recognition pipeline, by simultaneously learning to forecast
the effects of the agent’s motions on its internal representation of
its cumulative knowledge obtained from all past views. Results
across two challenging datasets confirm both that our end-to-
end system successfully learns meaningful policies for active
recognition, and that “learning to look ahead” further boosts
recognition performance.1

I. INTRODUCTION

People consistently direct their senses in order to improve
their chances of understanding their surroundings. For exam-
ple, you might swivel around in your armchair to observe a
person behind you, pick up and rotate a coffee mug on your
desk to read an inscription on it, or walk to the window to
better observe whether it is raining.

In sharp contrast to such scenarios, recent recognition
research has been focused almost exclusively on static image
recognition: the system takes a single snapshot as input, and
produces a category label estimate as output. The ease of
collecting large labeled datasets of images has enabled major
advances on this task in recent years, as evident for example in
the striking gains made by our community on the ImageNet
challenge [1]. Yet, despite this recent progress, recognition
performance remains low for more complex, unconstrained
images [2].

Recognition systems mounted on autonomous moving
agents acquire unconstrained visual input which may be dif-
ficult to recognize effectively for any one image at a time.
However, similar to the human actor in the opening examples
above, such systems have the opportunity to improve their per-
formance by moving their camera apparatus or manipulating
objects to acquire new information. In other words, a system’s
control over its own sensory input has tremendous potential to
influence visual recognition. While such mobile agent settings
(mobile robots, autonomous vehicles, etc.) are closer to reality
today than ever before, the problem of learning to actively
move to direct the acquisition of data remains underexplored
in modern visual recognition research.

1A preliminary version of the material in this document was filed as
University of Texas technical report no. UT AI15-06, December, 2015.

The problem we are describing fits into the realm of active
vision, which has a rich history in the literature (e.g., [3],
[4], [5], [6], [7], [8]). Active vision offers several technical
challenges that are unaddressed in today’s standard passive
scenario. In order to perform active vision, a system must learn
to intelligently direct the acquisition of input to be processed
by its recognition pipeline. In addition, recognition in an active
setting places different demands on a system than in the
standard passive scenario. For example, a major difference
is that “nuisance factors” in still image recognition—such
as pose, lighting, and viewpoint changes—become avoidable
factors in the active vision setting. In principle, such factors
can often be overcome merely by moving to the right location.

This calls for a major change of approach. Rather than
strive for invariance to nuisance factors as is the standard in
static image recognition, an intriguing strategy is to learn to
identify when conditions are non-ideal for recognition and to
actively select the correct agent motion that will lead to better
conditions. In addition, recognition decisions must be made
based on intelligently fusing observations over time.

We contend that these three functions of an active vision
system—control, per-view recognition, and evidence fusion
over time—are closely intertwined, and must be tailored to
work together. In particular, as the first contribution of this
paper, we propose to learn all three modules of an active vision
system simultaneously and end-to-end. We employ a stochastic
neural network to learn intelligent motion policies (control),
a standard neural network to process inputs at each time step
(per-view recognition), and a modern recurrent neural network
(RNN) to integrate evidence over time (evidence fusion).
Given an initial view and a set of possible agent motions,
our approach learns how to move in the 3-D environment to
produce accurate categorization results.

Additionally, we hypothesize that motion planning for active
vision requires an agent to internally “look before it leaps”.
That is, it ought to simultaneously reason about the effect of
its motions on future inputs. To demonstrate this, as a second
contribution, we jointly train our active vision system to have
the ability to predict how its knowledge will evolve conditioned
on its present state and its choice of motion. As we will
explain below, this may be seen as preferring equivariance
i.e. predictable feature responses to pose changes, rather than
invariance as is standard in passive recognition pipelines.

Through experiments on two datasets, we empirically val-
idate both our key ideas: (1) RNN-based end-to-end active
categorization and (2) learning to forecast the effects of self-
motion at the same time one learns how to move to solve
the recognition task. We study both a scene categorization

2

scenario, where the system chooses how to move around a
previously unseen 3-D scene, and an object categorization
scenario, where the system chooses how to manipulate a
previously unseen object that it holds. Our results comparing
to passive and simpler active view selection methods show the
high potential for such an approach.

II. RELATED WORK

a) Active vision: The idea that a subject’s actions may
play an important role in perception can be traced back almost
150 years [9] in the cognitive psychology literature [3]. “Active
perception”, the idea of exploiting intelligent control strategies
(agent motion, object manipulation, camera parameter changes
etc.) for goal-directed data acquisition to improve machine vi-
sion, was pioneered by [10], [8], [11], [4]. While most research
in this area has targeted low-level vision problems such as
segmentation, structure from motion, depth estimation, optical
flow estimation [12], [11], [8], or known object localization
(“semantic search”) [13], [14], [15], [16], approaches targeting
active recognition are most directly related to our work.

Most prior active recognition approaches attempt to identify
during training those canonical/“special” views that minimize
ambiguity among candidate labels [4], [5], [6], [7]. At test
time, such systems iteratively estimate the current pose, then
select the move that would take them to the pre-identified
disambiguating view that would confirm their current beliefs.
Such approaches are typically applicable only to instance
recognition problems, since broader categories can be too
diverse in appearance and shape to fix “special viewpoints”.

In contrast, our approach handles complex real-world cat-
egories. To the best of our knowledge, very little prior work
attempts the challenging task of active category recognition (as
opposed to instance recognition) [17], [18], [19], [20], [21].
To actively categorize small toy categories [17], a naive Bayes
model fuses information across time steps with observations
treated as independent. An information-gain method proposed
in [21] is used to select new views. The increased difficulty is
due to the fact that with complex real world categories, it is
much harder to anticipate new views conditioned on actions.
Since new instances will be seen at test time, it is not sufficient
to simply memorize the geometry of individual instances, as
many active instance recognition methods effectively do.

Recently, [18], [19] use information gain in view planning
for active categorization. Both methods learn to predict the
next views of unseen test objects conditioned on various
candidate agent motions starting from the current view, either
by estimating 3D models from 2.5D RGBD images [18] or by
learning to predict feature responses to camera motions [19].
They then estimate the information gain on their category
beliefs from each such motion, and finally greedily select
the estimated most informative “next-best” move. While our
idea for learning to predict action-conditional future views of
novel instances is similarly motivated, we refrain from explicit
greedy reasoning about the next move. Instead, our approach
uses reinforcement learning (RL) in a stochastic recurrent
neural network to learn optimal sequential movement policies
over multiple time-steps. The closest methods to ours in this

respect are [22] and [23], both of which employ Q-learning in
feedforward neural networks to perform view selection, and
target relatively simpler visual tasks compared to this work.

In addition to the above, an important novelty of our
approach is in learning the entire system end-to-end. Active
recognition approaches must broadly perform three separate
functions: action selection, per-instant view processing, and
belief updates based on the history of observed views. While
previous approaches have explored several choices for action
selection, they typically train a “passive” per-instant view
recognition module offline and fuse predictions across time
using some manually defined heuristic [6], [5], [17], [23]. For
example, recently a deep neural network was trained to learn
action policies in [23] after pretraining a per-view classifier
and using a simple Naive Bayes update heuristic for label
belief fusion. In contrast, we train all three modules jointly
within a single active recognition objective. This is important
because, passive recognition systems may have demands such
as invariance that are not suited to active recognition and
would therefore “distract” the learned features.

b) Saliency and attention: Visual saliency and attention
are related to active vision [24], [25], [26], [27], [28]. While
active vision systems aim to form policies to acquire new data,
saliency and attention systems aim to block out “distractors” in
existing data by identifying portions of input images/video to
focus on, often as a faster alternative to sliding window-based
methods. Attention systems thus sometimes take a “foveated”
approach [29], [24]. In contrast, in our setting, the system
never holds a snapshot of the entire environment at once.
Rather, its input at each time step is one portion of its complete
physical 3D environment, and it must choose motions leading
to more informative—possibly non-overlapping—viewpoints.
Another difference between the two settings is that the focus
of attention may move in arbitrary jumps (saccades) without
continuity, whereas active vision agents may only move con-
tinuously.

Sequential attention systems using recurrent neural net-
works in particular have seen significant interest of late [24],
with variants proving successful across several attention-based
tasks [25], [26], [28]. We adopt the basic attention architecture
of [24] as a starting point for our model, and develop it further
to accommodate the active vision setting, instill lookahead
capabilities, and select camera motions surrounding a 3D
object that will most facilitate categorization.

c) Predicting related features: There is recent interest
in “visual prediction” problems in various contexts, often
using convolutional neural networks (CNNs) [30], [31], [32],
[33], [18], [34], [19], [35]. For example, one can train CNNs
to predict the features of the next video frame conditioned
on the current one [30], or predict dense optical flow from
a single image [35]. Recurrent networks can also learn to
extrapolate videos based on previously observed frames [31].
These approaches do not attempt to reason about causes of
view transformations e.g. camera motions.

Close to our work are methods for “next view” prediction,
where the system generates the view change itself. In [32],
[33], approaches are developed to allow the manipulation of
the “factors of variation” (such as pose and lighting) of simple

3

synthetic images. High quality unseen views are predicted
given surrounding views accompanied by exact camera poses,
effectively learning 3D geometry end-to-end in a CNN [34].
The methods of [19], [36] learn to predict feature responses to
a defined set of discrete observer motions. Different from all
the above, we learn to predict the evolution of temporally ag-
gregated features—computed from a complete history of seen
views—as a function of observer motion choices. Furthermore,
we integrate this idea with the closely tied active recognition
problem.

d) Integrating sensors and actions: Our work is also
related to research in sensorimotor feature embeddings. There
the idea is to combine (possibly non-visual) sensor streams
together with proprioception or other knowledge about the
actions of the agent on which the sensors are mounted.
Various methods learn features that transform in simple ways
in response to an agent’s actions [37], [19], [38] or reflect the
geometry of an agent’s environment [39]. In [40], a neural
network learns to drive a simulated car in a video game.
In [41], end-to-end reinforcement learning trains robotic agents
to perform simple tasks. Perhaps conceptually most relevant
among these is [42]. Their method learns an image feature
space to determine control actions easily from visual inputs,
with applications to simulated control tasks. In contrast, we
learn embeddings encoding knowledge of complete histories
of observations and agent actions, with the aim of exposing
this knowledge to an active visual recognition controller.

III. APPROACH

First we define the setting and data flow for active recog-
nition (Sec. III-A). Then we define our system architecture
(Sec. III-B). Finally, we describe our look-ahead module
(Sec. III-C).

A. Setting

We first describe our active vision setting at test time,
using a 3-D object category recognition scenario as a running
example. Our results consider both object and scene category
recognition tasks. The active recognition system can issue
motor commands to move a camera within a viewing sphere
around the 3-D object X of interest. Each point on this viewing
sphere is indexed by a corresponding 2-D camera pose vector
p indexing elevation and azimuth.

The system is allowed T time steps to recognize every
object instance X . At every time step t = 1, 2, . . . T :
• The system issues a motor command mt e.g. “increase

camera elevation by 20 degrees, azimuth by 10 degrees”,
from a setM of available camera motions. In our exper-
iments, M is a discrete set consisting of small camera
motions to points on an elevation-azimuth grid centered at
the previous camera pose pt−1. At time instance t = 1,
the “previous” camera pose p0 is set to some random
unknown vector, corresponding to the agent initializing
its recognition episode at some arbitrary position with
respect to the object.

• Next, the system is presented a new 2-D view xt =
P (X,pt) of X captured from the new camera pose

pt = pt−1 + mt, where P (., .) is a projection function.
This new evidence is now available to the system while
selecting its next action mt+1.

Finally, at the final time-step t = T , the system must addition-
ally predict a category label ŷ for X , e.g., the object category it
believes is most probable. In our implementation, the number
of time-steps T is fixed, and all valid motor commands are
assumed to have uniform cost. The system is evaluated only
on the accuracy of its prediction ŷ. However, the framework
generalizes to the case of variable-length episodes.

B. Active recognition system architecture
Our basic active recognition system is modeled on the

recurrent architecture first proposed in [24] for visual atten-
tion. Our system is composed of four basic modules: AC-
TOR, SENSOR, AGGREGATOR and CLASSIFIER, with weights
Wa,Ws,Wr,Wc respectively. At each step t, ACTOR issues
a motor command mt, which updates the camera pose vec-
tor to pt = pt−1 + mt. Next, a 2-D image xt captured
from this pose is fed into SENSOR together with the mo-
tor command mt. SENSOR produces a view-specific fea-
ture vector st = SENSOR(xt,mt), which is then fed into
AGGREGATOR to produce aggregate feature vector at =
AGGREGATOR(s1, . . . , st). The cycle is completed when, at
the next step t + 1, ACTOR processes the aggregate feature
from the previous time step to issue mt+1 = ACTOR(at).
Finally, after T steps, the category label beliefs are predicted as
ŷ(W,X) = CLASSIFIER(at), where W = [Wa,Ws,Wr,Wc]
is the vector of all learnable weights in the network, and for a
C-class classification problem, ŷ is a C-dimensional multino-
mial probability density function representing the likelihoods
of the 3-D object X belonging to each of the C classes. See
Fig 1 for a schematic showing how the modules are connected.

In our setup, AGGREGATOR is a recurrent neural network,
CLASSIFIER is a simple fully-connected hidden layer followed
by a log-softmax and SENSOR separately processes the view xt

and the motor signal mt in disjoint neural network pipelines
before merging them through more layers of processing to
produce the per-instance view feature st = SENSOR(xt,mt).
ACTOR has a non-standard neural net architecture involving
stochastic units: at each time step, it internally produces an
|M|-dimensional multinomial density function π(mt) over all
candidate camera motions in M, from which it samples one
motion. For more details on the internal architecture of these
modules, see Supp.

e) Training: At training time, the network weights W are
trained jointly to maximize classifier accuracy at time T . Fol-
lowing [24], training W follows a hybrid procedure involving
both standard backpropagation and “connectionist reinforce-
ment learning” [43]. The modules with standard deterministic
neural network connections (CLASSIFIER, AGGREGATOR and
SENSOR) with joint weight vector denoted by W\a can be
trained directly by backpropagating gradients from a softmax
classification loss, while the ACTOR module which contains
stochastic units can only be trained using the REINFORCE
procedure of [43].

Roughly, REINFORCE treats the ACTOR module containing
stochastic units as a Partially Observable Markov Decision

4

time t

...

time Ttime t+1

Fig. 1: A schematic of our system architecture depicting the interaction between ACTOR, SENSOR and AGGREGATOR and CLASSIFIER
modules, unrolled over time-steps. Information flows from left to right. At training time, the additional LOOKAHEAD acts across two time-
steps, learning to predict the evolution of the aggregate feature at into at+1 conditional on the selected motion mt. See Sec III-B for
details.

Process (POMDP), with the pdf π(mt|at−1,W) representing
the policy to be learned. In a reinforcement learning (RL)-
style approach, REINFORCE iteratively increases weights in
the pdf π(m) on those candidate motions m ∈ M that have
produced higher “rewards”, as defined by a reward function. A
simple REINFORCE reward function to promote classification
accuracy could be Rc(ŷ) = 1 when the most likely label in
ŷ is correct, and 0 when not. To speed up training, we use
a variance-reduced version of this loss R(ŷ) = Rc(ŷ) − b,
where b is set to the reward for a simple baseline predictor
that learns to predict the constant value that yields the most
reward i.e. the most frequent class in training data. Beyond the
stochastic units, the REINFORCE algorithm produces gradi-
ents that may be propagated to non-stochastic units through
standard backpropagation. In our hybrid training approach,
these REINFORCE gradients from ACTOR are therefore added
to the softmax loss gradients from CLASSIFIER before back-
propagation through AGGREGATOR and SENSOR.

More formally, given a training dataset of instance-label
pairs {(Xi, yi) : 1 ≤ i ≤ N}, the gradient updates are as
follows. Let W\c denote [Wa,Ws,Wr], i.e. all the weights in
W except the CLASSIFIER weights Wc, and similarly, let W\a
denote [Wc,Wr,Ws]. Then:

∆WRL
\c ≈

N∑
i=1

T∑
t=1

∇W\c log π(mi
t|ai

t−1;W\c)R
i, (1)

∆WSM
\a = −

N∑
i=1

∇W\aLsoftmax(ŷi(W,X), yi), (2)

where indices i in the superscripts denote correspondence
to the ith training sample Xi. Eq (1) and (2) show the
gradients computed from the REINFORCE rewards (RL) and
the softmax loss (SM) respectively, for different subsets of
weights. The REINFORCE gradients ∆WRL are computed
using the approximation proposed in [43]. Final gradients with
respect to the weights of each module used in weight updates
are given by: ∆Wa = ∆WRL

a , ∆Ws = ∆WRL
s + ∆WSM

s ,
∆Wr = ∆WRL

r + ∆WSM
r , ∆Wc = ∆WRL

c + ∆WSM
c .

Training is through standard stochastic gradient descent with
early stopping based on a validation set.

One important difference between our system and prior
active view selection approaches is that we attempt to avoid
manually defined heuristics to guide the camera motion. In-
stead, our method learns motion policies from scratch, based
on the aggregated knowledge from the full history of past
views, as contained in at. With sufficient training data, better
ultimate policies may result.

C. Look-ahead: predicting the effects of motions

Active recognition systems select the next motion based on
some expectation of the next view. Though non-trivial even
in the traditional instance recognition setting [4], [5], [6], [7],
with instances one can exploit the fact that pose estimation
in some canonical pose space is sufficient in itself to estimate
properties of future views. In other words, with enough prior
experience seeing the object instance, it is largely a 3-D (or
implicit 3-D) geometric model formation problem.

In contrast, as discussed in Sec. II, this problem is much
harder in active categorization with realistic categories—the
domain we tackle. Predicting subsequent views in this setting
is severely under-constrained, and requires reasoning about
semantics and geometry together. In other words, next view
planning requires some element of learning about how 3-D
objects in general change in their appearance as a function of
observer motion.

We hypothesize that the ability to predict the next view con-
ditional on the next camera motion is closely tied to the ability
to select optimal motions. Thus, rather than learn separately
the model of view transitions and model of motion policies, we
propose a unified approach to learn them jointly. Our idea is
that knowledge transfer from a view prediction task will prove
beneficial for active categorization. In this formulation, we
retain the system from Sec. III-B, but simultaneously learn to
predict, at every time step t, the impact on aggregate features
at+1 at the next time step, given at and any choice of motion
mt ∈ M. In other words, we simultaneously learn how the

5

accumulated history of learned features—not only the current
view—will evolve as a function of our candidate motions.

To perform this auxiliary task, we introduce an addi-
tional module, LOOKAHEAD, with weights Wl into the setup
of Sec. III-B at training time. At time step t, LOOKA-
HEAD takes as input at−1 and mt−1 and predicts ât =
LOOKAHEAD(at−1,mt−1). This module may be thought of
as a “predictive auto-encoder” in the space of aggregate
features at output by AGGREGATOR. A look-ahead error
loss is computed at every time-step between the predicted
and actual aggregate features: d(ât,at|at−1,mt−1). We use
the cosine distance to compute this error. This per-time-step
look-ahead loss provides a third source of training gradients
for the network weights, as it is backpropagated through
AGGREGATOR and SENSOR:

∆WLA
\ca =

N∑
i=1

T∑
t=2

∇W\cad(ât,at|at−1,mt−1), (3)

where W now includes Wl. The LOOKAHEAD module itself
is trained solely from this error, so that ∆Wl = ∆WLA

l .
The final gradients used to train SENSOR and AGGREGATOR
change to include this new loss: ∆Ws = ∆WRL

s +∆WSM
s +

λ∆WLA
s , ∆Wr = ∆WRL

r + ∆WSM
r + λ∆WLA

r . λ is a new
hyperparameter that controls how much the weights in the core
network are influenced by the look-ahead error loss.

The look-ahead error loss of Eq 3 may also be interpreted
as an unsupervised regularizer on the classification objective
of Eq 1 and 2. This regularizer encodes the hypothesis that
good features for the active recognition task must respond in
learnable, systematic ways to camera motions.

This is related to the role of “equivariant” image features
in [19], where it was shown that regularizing image fea-
tures to respond predictably to observer egomotions improves
performance on a standard static image categorization tasks.
We differ from [19] in several important ways. First, we
explore the utility of lookahead for the active categorization
problem, not recognition of individual static images. Second,
the proposed lookahead module is conceptually distinct from
that in prior work. In particular, we propose to regularize the
aggregate features from a sequence of activity, not simply per-
view features. Whereas in [19] the effect of a discrete ego-
motion on one image is estimated by linear transformations in
the embedding space, the proposed lookahead module takes as
input both the history of views and the selected motion when
estimating the effects of hypothetical motions.

f) Proprioceptive knowledge: Another useful feature of
our approach is that it allows for easy modeling of pro-
prioceptive knowledge such as the current position pt of a
robotic arm. Since the ACTOR module is trained purely through
REINFORCE rewards, all other modules may access its output
mt without having to backpropagate extra gradients from the
softmax loss. For instance, while the sensor module is fed mt

as input, it does not directly backpropagate any gradients to
train ACTOR. Since pt is a function solely of (m1...mt), this
knowledge is readily available for use in other components
of the system without any changes to the training procedure
described above. We append appropriate proprioceptive infor-

mation to the inputs of ACTOR and LOOKAHEAD, detailed in
experiments.

g) Greedy softmax classification loss: We found it bene-
ficial at training time to inject softmax classification gradients
after every time-step, rather than only at the end of T time
steps. To achieve this, the CLASSIFIER module is modified
to contain a bank of T classification networks with identical
architectures (but different weights, since in general, AGGRE-
GATOR outputs at at different time steps may have domain
differences). Note that the REINFORCE loss is still computed
only at t = T . Thus, given that softmax gradients do not pass
through the ACTOR module, it remains free to learn non-greedy
motion policies.

IV. EXPERIMENTS

We evaluate our approach for object and scene categoriza-
tion. In both cases, the system must choose how it will move
in its 3-D environment such that the full sequence of its actions
lead to the most accurate categorization results.

A. Datasets and baselines

While active vision systems have traditionally been tested
on custom robotic setups [17] (or simple turn-table-style
datasets [6]), we aim to test our system on realistic, off-
the-shelf datasets in the interest of benchmarking and re-
producibility. We work with two publicly available datasets,
SUN360 [44] and GERMS [23].

Our SUN360 [44] experiments test a scenario where the
agent is exploring a 3-D scene and must intelligently turn itself
to see new parts of the scene that will enable accurate scene
categorization (bedroom, living room, etc.). SUN360 consists
of spherical panoramas of various indoor and outdoor scenes
together with scene category labels. We use the 26-category
subset (8992 panoramic images) used in [44]. Each panorama
by itself represents a 3-D scene instance, around which an
agent “moves” by rotating its head, as shown in Fig 2. For our
experiments, the agent has a limited field of view (45 degrees)
at each time step. We sample discrete views in a 12 elevations
(camera pitch) × 12 azimuths (camera yaw) grid. The pitch
and yaw steps are both spaced 30 degrees apart (12×30=360),
so that the entire viewing sphere is uniformly sampled on
each axis. Starting from a full panorama of size 1024× 2048,
each 45 degree FOV view is represented first as a 224× 224
image, from which 1024-dimensional GoogleNet [45] features
are extracted from the penultimate layer. At each time step,
the agent can choose to move to viewpoints on a 5×7 grid
centered at the current position. We use T = 3 time steps.2

Proprioceptive knowledge in the form of the current elevation
angle of the camera is fed into ACTOR and LOOKAHEAD. We
use a random 80-20 train-test split. Our use of SUN360 to
simulate an active agent in a 3D scene is new and offers
a realistic scenario that we can benchmark rigorously; note
that previous work on the dataset does a different task, i.e.,
recognition with the full panorama in hand at once [44], and
results are therefore not comparable to our setting.

2Episode lengths were set based on learning time for efficient experimen-
tation.

6

SUN360 panorama and viewing sphere

0 180 360

0

90

-90

grid of views captured from

di

1

2

3

4

5

6

7

8

01 02 03 04 05 06 07 08 09 10 11 12

1

2

.

.

.

12

1 2 ... 12

Fig. 2: (Best seen in color) An example of an “airplane interior“ class showing how SUN360 spherical panoramas (shown here as a distorted
rectangular image on the left) are converted into 12×12 view grids, with each view spanning a field of view of 45 degrees from the panorama.
As an illustration, the view at grid coordinates x = 4, y = 6 outlined in green in the view grid on the right corresponds approximately to
the overlap region (also outlined in green) on the left (approximate because of panorama distortions—rectangles in the panorama are not
rectangles in the rectified views present in the grid). The 5 × 7 red shaded region in the view grid (right) shows the motions available to
ACTOR when starting from the highlighted view.

Fig. 3: The GERMS active instance recognition dataset [23] contains videos of a single-axis robotic hand rotating 136 toys against a moving
background.

Our GERMS [23] experiments consider the scenario where
a robot is holding an object and must decide on its next
best motion relative to that object, e.g., to gain access to an
unseen facet of the object, so as to recognize its instance label.
GERMS has 6 videos each (3 train, 3 test) of 136 objects
being rotated around different fixed axes, against a television
screen displaying moving indoor scenes (see Fig 3). Each
video frame is annotated by the angle at which the robotic
arm is holding the object. Each video provides one collection
of views that our active vision system can traverse at will, for a
total of 136× 6 = 816 train/test instances (compared to 8992
on SUN360). While GERMS is small and targets instance
rather than category recognition, aside from SUN360 it is the
most suitable prior dataset facilitating active recognition. Each
frame is represented by a 4096-dimensional VGG-net feature
vector [46], provided by the authors [23]. We again set episode
lengths to T = 3 steps. As proprioceptive knowledge, we
feed the current position of the robotic hand into ACTOR and
LOOKAHEAD. We use the train-test subsets specified by the
dataset authors.

h) Baselines:: Our “Look-ahead active RNN” (Sec III-C)
and our simpler “Active RNN” (Sec III-B) are evaluated
through comparison against three baselines:
• “Single view”: which has access to only one view, like

the starting view provided to the active systems. A feed-
forward neural network is used for this baseline, com-
posed from the appropriate components of the SENSOR
and CLASSIFIER modules of our system.

• “Random views (average)”: uses the same architecture as
“Single view”, but has access to T views, with successive

views being related by randomly selected motions from
the same motion set M available to the active systems.
It uses an ensemble classifier: its output class likelihood
at t = T is the average of its independent estimates of
class likelihood for each view.

• “Random views (recurrent)”: this baseline uses the same
core architecture as our Active RNN method, except
for the ACTOR module. In its place, random motions
are selected. Note that this should be a strong baseline,
having nearly all aspects of the proposed approach except
for the active view selection module. In particular, it has
access to its selected motions in its SENSOR module, and
can also learn to intelligently aggregate evidence over
views in its AGGREGATOR RNN module.

Hyperparameters for all methods were optimized for overall
accuracy on a validation set through iterative search over
random combinations per [47].

B. Results

Table I shows the recognition accuracy results for scene
categorization (SUN360) and object instance recognition
(GERMS), and Figure 4 plots the results as a function of time
steps. Both variants of our method outperform the baselines on
both datasets, confirming that our active approach successfully
learns intelligent view selection strategies. In addition, our
Look-ahead active RNN outperforms our Active RNN variant
on both datasets, showing the value in simultaneously learning
to predict action-conditional next views at the same time we
learn the active vision policy. By “looking before leaping” our

7

Method↓/Dataset→ SUN360 GERMS
Performance measure→ T=2 acc. T=3 acc. T=2 acc. T=3 acc.

Chance 14.08 14.08 0.74 0.74
Single view 40.12±0.45 40.12±0.45 40.31±0.23 40.31±0.23
Random views (average) 45.71±0.29 50.47±0.37 45.71±0.30 46.97±0.43
Random views (recurrent) 47.74±0.27 51.29±0.21 44.85±0.40 44.24±0.24

Active RNN (ours) 50.76±0.41 57.52±0.46 47.30±0.73 46.86±0.97
Look-ahead active RNN (ours) 51.72±0.29 58.12±0.43 48.02±0.68 47.99±0.79
Look-ahead active RNN+average (ours) 49.62±0.43 55.43±0.38 47.00±0.45 48.31±0.72

TABLE I: Recognition accuracy for both datasets (mean and std error over 5 runs)

#views

1 1.5 2 2.5 3

a
c
c
u
ra

c
y

40

45

50

55

60
SUN360

Look-ahead Active RNN

Active RNN

Random views (rec)

Random views (avg)

#views

1 1.5 2 2.5 3
a
c
c
u
ra

c
y

40

42

44

46

48

50
GERMS

Look-ahead Active RNN

Active RNN

Random views (rec)

Random views (avg)

Fig. 4: Evolution of accuracy vs time for various active recognition methods, on SUN360 (left) and GERMS (right).

look-ahead module facilitates beneficial knowledge transfer for
the active vision task.

On SUN360, though it represents a much harder active
category recognition problem, the margins between passive
and active methods are pronounced—even against the passive
baseline “Random views (recurrent)” which benefits from
all aspects of our architecture design except for the action
selection. Recall that previous uses of the SUN360 data
categorize the panorama as a whole, whereas we do active
recognition through a series of actively chosen mini-glimpses
in the scene; thus comparison to reported numbers (e.g.,[44])
are not applicable because the tasks are entirely different.

The margins of gains between active and passive are smaller
on GERMS. Upon analysis, it became clear this is due to
GERMS being a relatively small dataset. Not only is (1) the
number of active recognition instances small compared to
SUN360 (816 vs. 8992), but (2) different views of the same
object instance are naturally closer to each other than different
views from a SUN360 panorama view-grid (see Fig 2 and
Fig 3) so that even single view diversity is low, and (3) because
there is only a single degree of motion compared to two in
SUN360. As a result, the number of possible reinforcement
learning episodes is also much smaller. Upon inspection, we
found that these factors can lead our end-to-end network
to overfit to training data (which we countered with more
aggressive regularization). In particular, it is problematic if our
method achieves zero training error from just single views,
so that the network has no incentive to learn to aggregate
information across views well. Our active results are in line
with those presented as a benchmark in the paper introducing
the dataset [23], and we expect more training data is necessary
to move further with end-to-end learning on this challenge.

As an upshot, interestingly, we see further improvements
on GERMS by averaging the CLASSIFIER modules’ outputs
i.e. class likelihoods estimated from the aggregated features at
each time step t = 1, .., T (“Look-ahead active RNN+average
(ours)”). Since the above factors make it difficult to learn the
optimal AGGREGATOR in an end-to-end system like ours, a
second tier of aggregation in the form of averaging over the
outputs of our system can yield improvements. In contrast,
since SUN offers much more training data, averaging over
per-timestep CLASSIFIER outputs significantly reduces the
performance of the system, compared to directly using the
last timestep output. This is exactly as one would hope for
a successful end-to-end training. This reasoning is further
supported by the fact that “Random views (average)” shows
slightly poorer performance than “Random views (recurrent)”
on GERMS, but vastly better on SUN360.

Indeed, the large performance gap between “Random views
(average)” and “Random views (recurrent)” on SUN360 points
to an important advantage of treating object/scene catego-
rization as a grounded, sequence-based decision process. The
ability to intelligently fuse observations over time-steps based
on both the views themselves and the camera motions relat-
ing them offers substantial rewards. In contrast, the current
computer vision literature in visual categorization is largely
focused on categorization strategies that process individual
images outside of the context of any agent motion or sequential
data, much like the “Single view” or “Random views (aver-
age)” baselines. We see these empirical results as an exciting
prompt for future work in this space. They also suggest
the need for increased efforts creating large 3-D and video
benchmark datasets (in the spirit of SUN360 and GERMS
and beyond) to support such vision research, allowing us to

8

systematically study these scenarios outside of robot platforms.
The result on SUN360 in particular is significant since, to

the best of our knowledge, no prior active recognition approach
has been shown to successfully handle any comparably com-
plex dataset, containing real-world categories. While active
categorization is technically challenging compared to recogni-
tion as discussed in Sec II, datasets like SUN360, containing
complex visual data and requiring significant semantic under-
standing to plan motion sequences well for categorization, may
actually be most suited to showing the advantages of the active
recognition paradigm. By employing intelligent view selection
and evidence fusion, they perform well even though individual
views are often highly ambiguous (e.g., say, patches of the
sky).

V. CONCLUSIONS

We presented a new end-to-end approach for active visual
categorization. Our framework simultaneously learns 1) how
the system should move to improve its sequence of observa-
tions, and 2) how a sequence of future observations is likely
to change conditioned on its possible actions. We show the
impact on object and scene recognition, where our active
approach makes sizeable strides over single view and passively
moving systems. Furthermore, we establish the positive impact
in treating all components of the active recognition system
simultaneously. All together, the results are encouraging evi-
dence that modern visual recognition algorithms can venture
further into unconstrained, sequential data, moving beyond the
static image snapshot labeling paradigm.

9

Fig. 5: Examples of selected views (highlighted in red) by our method. Please see supplementary for more examples. Each row represents
our method selecting views among a 12× 12 view grid constructed from a SUN360 panorama. Our method intelligently decides where to
look next to resolve scene class ambiguity. For example on the third row, the method moves from ambiguous sky patches to more detailed
ground patches to identify the scene (Note the wrap-around from views 2 to 3).

10

REFERENCES

[1] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei,
L.: ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV) (April 2015) 1–42

[2] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context.
In: Computer Vision–ECCV 2014. Springer (2014) 740–755

[3] Andreopoulos, A., Tsotsos, J.: 50 years of object recognition: Directions
forward. In: CVIU. (2013)

[4] Wilkes, D., Tsotsos, J.: Active object recognition. In: CVPR. (1992)
[5] Dickinson, S., Christensen, H., Tsotsos, J., Olofsson, G.: Active object

recognition integrating attention and viewpoint control. In: CVIU.
(1997)

[6] Schiele, B., Crowley, J.: Transinformation for active object recognition.
In: ICCV. (1998)

[7] Callari, F., Ferrie, F.: Active object recognition: Looking for differences.
(2001)

[8] Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. In: IJCV.
(1988)

[9] Brentano, F.: Psychologie vom empirischen Standpunkte. (1874)
[10] Bajcsy, R.: Active perception. In: IEEE. (1988)
[11] Ballard, D.: Animate vision. In: AI. (1991)
[12] Mishra, A., Aloimonos, Y., Fermuller, C.: Active segmentation for

robotics. In: IROS. (2009)
[13] Andreopoulos, A., Tsotsos, J.: A theory of active object localization.

In: ICCV. (2009)
[14] Helmer, S., Meger, D., Viswanathan, P., McCann, S., Dockrey, M.,

Fazli, P., Southey, T., Muja, M., Joya, M., Little, J., et al.: Semantic
robot vision challenge: Current state and future directions. In: IJCAI
workshop. (2009)

[15] Garcia, A.G., Vezhnevets, A., Ferrari, V.: An active search strategy for
efficient object detection. (2015)

[16] Soatto, S.: Actionable information in vision. In: ICCV. (2009)
[17] Ramanathan, V., Pinz, A.: Active object categorization on a humanoid

robot. In: VISAPP. (2011) 235–241
[18] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D

ShapeNets: A deep representation for volumetric shape modeling. In:
CVPR. (2015)

[19] Jayaraman, D., Grauman, K.: Learning image representations tied to
ego-motion. In: ICCV. (2015)

[20] Yu, X., Fermuller, C., Teo, C.L., Yang, Y., Aloimonos, Y.: Active scene
recognition with vision and language. In: CVPR. (2011)

[21] Borotschnig, H., Paletta, L., Prantl, M., Pinz, A., et al.: Active object
recognition in parametric eigenspace. In: BMVC. (1998)

[22] Paletta, L., Pinz, A.: Active object recognition by view integration and
reinforcement learning. In: RAS. (2000)

[23] Malmir, M., Sikka, K., Forster, D., Movellan, J., Cottrell, G.W.: Deep
q-learning for active recognition of germs: Baseline performance on a
standardized dataset for active learning

[24] Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models
of visual attention. In: NIPS. (2014)

[25] Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with
visual attention. In: ICLR. (2015)

[26] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R.,
Zemel, R., Bengio, Y.: Show, attend and tell: Neural image caption
generation with visual attention. In: ICML. (2015)

[27] Bazzani, L., Larochelle, H., Murino, V., Ting, J.A., Freitas, N.d.:
Learning attentional policies for tracking and recognition in video with
deep networks. In: ICML. (2011)

[28] Sermanet, P., Frome, A., Real, E.: Attention for fine-grained categoriza-
tion. arXiv (2014)

[29] Butko, N., Movellan, J.: Optimal scanning for faster object detection.
In: CVPR. (2009)

[30] Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating the future by
watching unlabeled video. (29 April 2015)

[31] Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra,
S.: Video (language) modeling: a baseline for generative models of
natural videos. arXiv preprint arXiv:1412.6604 (2014)

[32] Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convo-
lutional inverse graphics network. (11 March 2015)

[33] Ding, W., Taylor, G.W.: “mental rotation” by optimizing transforming
distance. In: NIPS DL Workshop. (2014)

[34] Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: Learning
to predict new views from the world’s imagery. (22 June 2015)

[35] Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from
a static image. arXiv preprint arXiv:1505.00295 (2015)

[36] Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In:
ICCV. (2015)

[37] Bowling, M., Ghodsi, A., Wilkinson, D.: Action respecting embedding.
In: ICML. (2005)

[38] Cohen, T.S., Welling, M.: Transformation properties of learned visual
representations. arXiv preprint arXiv:1412.7659 (2014)

[39] Stober, J., Miikkulainen, R., Kuipers, B.: Learning geometry from
sensorimotor experience. In: Development and Learning (ICDL), 2011
IEEE International Conference on. (2011)

[40] Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: Learning
affordance for direct perception in autonomous driving. arXiv preprint
arXiv:1505.00256 (2015)

[41] Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-End training of deep
visuomotor policies. (2 April 2015)

[42] Watter, M., Springenberg, J.T., Boedecker, J., Riedmiller, M.: Embed
to control: A locally linear latent dynamics model for control from raw
images. (24 June 2015)

[43] Williams, R.: Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. In: JMLR. (1992)

[44] Xiao, J., Ehinger, K., Oliva, A., Torralba, A., et al.: Recognizing scene
viewpoint using panoramic place representation. In: CVPR. (2012)

[45] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolu-
tions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2015) 1–9

[46] Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

[47] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimiza-
tion. In: JMLR. (2012)

11

This document provides information supplementary to the
main paper. Procedure block 1 lists the steps involved in
the forward pass during training/inference. Fig 6 provides a
detailed schematic diagram explaining the architectures of and
connections amongst the modules of our active vision system.
Dataset-specific details of training-related choices are provided
in Sec VI. Finally, at the end of this document, we present
some examples of view sequences selected by our approach.

VI. DATASET-SPECIFIC TRAINING DETAILS

Training for both datasets followed the general procedure
described in Sec 3 of the main paper. In this section, we
mention details of the training procedures specific to the two
datasets. For SUN360, the full system shown in the schematic
of Fig 6 was trained end-to-end in one shot. No dropout was
employed in either of the Dropout layers in Fig 6.

For GERMS, the paucity of data and the relative simplicity
of the task created some difficulties during training. First, for
convergence, it was necessary to initialize end-to-end training
at T = 3 with the weights of the same network trained end-
to-end at T = 1. Given the shortcomings of the dataset though
(small training set and ease of task), the T = 1 network had
already achieved zero training error. This meant, the T = 3
network initialized with T = 1 weights did not have sufficient
error gradients from the softmax classification loss for training
to proceed. To handle this, we introduced dropout rates of
2e-5 and 0.5 at the CNN feature layer (as a kind of data
augmentation) and preceding the AGGREGATOR input layer,
respectively.

The other choices and hyperparameters involved in training
are listed below: (marked with [*] when selected through
cross-validation; others were fixed based on values known to
work well for similar systems in the past)
• Gradient descent variant: Stochastic gradient descent

(batch-size 32) with momentum (0.9)
• Starting learning rate [*]: 7e-3 (SUN360), 3e-3 (GERMS)
• Learning rate schedule: Linear decay towards a minimum

learning rate of 1e-5 after 800 epochs (both datasets)
• Weight decay rate (L2 regularization on network

weights): 5e-3 for both
• Lookahead λ [*]: 1.5 (SUN360), 0.05 (GERMS). Expla-

nation for this hyperparameter: As specified in Sec 3 in
the main paper, the net error from which derivatives are
computed for modules other than ACTOR is:

T∑
t=1

(classification Lsoftmax at t) + λ

T∑
t=1

dlookahead(ât,at)

(4)
• Weight initialization: uniform between 0 and 0.1 for all

weights, except the recurrent network feedback weights
(Linear(256,256) block inside AGGREGATOR in Fig 6),
whose weights and biases were initialized to identity
I256×256 and zero 0256×1 respectively.

• Convergence criterion: Training is terminated when vali-
dation classification accuracy does not fall for 50 epochs.
The rough number of epochs (full passes over training
data) required for convergence are 250 for SUN360 and

150 for GERMS. Total training time is approximately 2
hours for SUN360 and 1.5 hours for GERMS.

If the paper is accepted, code and processed data will be
made available for easy reproducibility.

VII. EXAMPLES OF SELECTED VIEWS

At the end of this document, we provide some examples of
views selected by our approach when presented with SUN360
panoramas. Each example consists of two rows of T = 3
panels each. The top row corresponds to the views selected,
and the bottom row shows where on the 12×12 view grid they
are selected from. The eye graphics at the corners of the top
row views indicate the elevation angle of each view (legend
provided in the bottom row, left in each example). Note that
views appear inverted when elevation angle is >90 or < -90
degrees, because these correspond to the agent “bending over
backwards”.

In each example, the first view is chosen at random for
presentation to the system, and the remaining views are
chosen automatically by the system itself, within a 5 × 7
grid neighborhood of the preceding view. In the bottom row
of panels (view grids), the transparent red square shows the
view that is currently being observed, and the 5 × 7 grid of
transparent yellow squares shows the views that are available
for selection at the next time step.

True category names are indicated above each example (left
top), and the likelihood of the true category, as returned by the
CLASSIFIER module of our system at every time-step, is shown
in parentheses above each corresponding view. Note that these
are aggregated likelihood scores i.e., the score at time t is
based on observations at times 1,2. . . t. In addition, we list the
top-3 most likely categories (among 26 total) returned by our
model above each view.

As can be seen from these examples (also explained in
accompanying captions for a few cases, as an illustration),
in many cases, (1) the automatic motion/view selection per-
formed by our ACTOR module, serves to increase the con-
fidence of the right category, and helps disambiguate among
confusing categories. (2) AGGREGATOR efficiently fuses infor-
mation across time-steps, often showing evidence of account-
ing for the agent’s motions relative to previous views.

REFERENCES

[1] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei,
L.: ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV) (April 2015) 1–42

[2] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context.
In: Computer Vision–ECCV 2014. Springer (2014) 740–755

[3] Andreopoulos, A., Tsotsos, J.: 50 years of object recognition: Directions
forward. In: CVIU. (2013)

[4] Wilkes, D., Tsotsos, J.: Active object recognition. In: CVPR. (1992)
[5] Dickinson, S., Christensen, H., Tsotsos, J., Olofsson, G.: Active object

recognition integrating attention and viewpoint control. In: CVIU.
(1997)

[6] Schiele, B., Crowley, J.: Transinformation for active object recognition.
In: ICCV. (1998)

[7] Callari, F., Ferrie, F.: Active object recognition: Looking for differences.
(2001)

[8] Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. In: IJCV.
(1988)

12

... ...
time t time t+1

Fig. 6: A detailed schematic diagram showing the architectures of and connections amongst our active vision system modules. The small
schematic at the top (repeated from Fig1 in the paper) presents a succinct bird’s-eye view of information flow within as well as between time
steps, and the large schematic below zooms into the operations at some given time step t in more detail. Processing proceeds from left to
right, with arrows to disambiguate where necessary. In the bottom schematic, “Linear(a,b)” denotes fully connected layers which transform
a-length vector inputs to b-length vector outputs. The “Clamp” operator in ACTOR is a squashing function that sets both upper and lower
limits on its inputs. The red “Sample” layer in ACTOR takes the weights of a multinomial pdf as input and samples stochastically from the
distribution to produce its output (gradients cannot be backpropagated through this layer; it is trained through REINFORCE [43] instead of
SGD from the classification loss). “Delay” layers store inputs internally for one time-step and output them at the next time-step. Other layer
names in the schematic are self-explanatory. Input and output sizes of some layers are marked in red to denote that these are parameters
derived from dataset-related choices — these are set for our SUN360 experiments in this schematic, and explanations are shown below
each module. Note that AGGREGATOR is a recurrent neural network, and LOOKAHEAD may be considered a “predictive” autoencoder, that
reduces its input features (appended together with the current agent motion mt) to a more compact representation in its bottleneck layer
before producing its prediction of its next time-step input.

[9] Brentano, F.: Psychologie vom empirischen Standpunkte. (1874)
[10] Bajcsy, R.: Active perception. In: IEEE. (1988)
[11] Ballard, D.: Animate vision. In: AI. (1991)
[12] Mishra, A., Aloimonos, Y., Fermuller, C.: Active segmentation for

robotics. In: IROS. (2009)
[13] Andreopoulos, A., Tsotsos, J.: A theory of active object localization.

In: ICCV. (2009)
[14] Helmer, S., Meger, D., Viswanathan, P., McCann, S., Dockrey, M.,

Fazli, P., Southey, T., Muja, M., Joya, M., Little, J., et al.: Semantic
robot vision challenge: Current state and future directions. In: IJCAI
workshop. (2009)

[15] Garcia, A.G., Vezhnevets, A., Ferrari, V.: An active search strategy for
efficient object detection. (2015)

[16] Soatto, S.: Actionable information in vision. In: ICCV. (2009)
[17] Ramanathan, V., Pinz, A.: Active object categorization on a humanoid

robot. In: VISAPP. (2011) 235–241
[18] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D

ShapeNets: A deep representation for volumetric shape modeling. In:
CVPR. (2015)

[19] Jayaraman, D., Grauman, K.: Learning image representations tied to
ego-motion. In: ICCV. (2015)

[20] Yu, X., Fermuller, C., Teo, C.L., Yang, Y., Aloimonos, Y.: Active scene
recognition with vision and language. In: CVPR. (2011)

[21] Borotschnig, H., Paletta, L., Prantl, M., Pinz, A., et al.: Active object
recognition in parametric eigenspace. In: BMVC. (1998)

[22] Paletta, L., Pinz, A.: Active object recognition by view integration and
reinforcement learning. In: RAS. (2000)

[23] Malmir, M., Sikka, K., Forster, D., Movellan, J., Cottrell, G.W.: Deep
q-learning for active recognition of germs: Baseline performance on a
standardized dataset for active learning

[24] Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models
of visual attention. In: NIPS. (2014)

[25] Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with
visual attention. In: ICLR. (2015)

[26] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R.,
Zemel, R., Bengio, Y.: Show, attend and tell: Neural image caption
generation with visual attention. In: ICML. (2015)

[27] Bazzani, L., Larochelle, H., Murino, V., Ting, J.A., Freitas, N.d.:
Learning attentional policies for tracking and recognition in video with
deep networks. In: ICML. (2011)

[28] Sermanet, P., Frome, A., Real, E.: Attention for fine-grained categoriza-
tion. arXiv (2014)

[29] Butko, N., Movellan, J.: Optimal scanning for faster object detection.

13

In: CVPR. (2009)
[30] Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating the future by

watching unlabeled video. (29 April 2015)
[31] Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra,

S.: Video (language) modeling: a baseline for generative models of
natural videos. arXiv preprint arXiv:1412.6604 (2014)

[32] Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convo-
lutional inverse graphics network. (11 March 2015)

[33] Ding, W., Taylor, G.W.: “mental rotation” by optimizing transforming
distance. In: NIPS DL Workshop. (2014)

[34] Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: Learning
to predict new views from the world’s imagery. (22 June 2015)

[35] Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from
a static image. arXiv preprint arXiv:1505.00295 (2015)

[36] Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In:
ICCV. (2015)

[37] Bowling, M., Ghodsi, A., Wilkinson, D.: Action respecting embedding.
In: ICML. (2005)

[38] Cohen, T.S., Welling, M.: Transformation properties of learned visual
representations. arXiv preprint arXiv:1412.7659 (2014)

[39] Stober, J., Miikkulainen, R., Kuipers, B.: Learning geometry from
sensorimotor experience. In: Development and Learning (ICDL), 2011
IEEE International Conference on. (2011)

[40] Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: Learning
affordance for direct perception in autonomous driving. arXiv preprint
arXiv:1505.00256 (2015)

[41] Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-End training of deep
visuomotor policies. (2 April 2015)

[42] Watter, M., Springenberg, J.T., Boedecker, J., Riedmiller, M.: Embed
to control: A locally linear latent dynamics model for control from raw
images. (24 June 2015)

[43] Williams, R.: Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. In: JMLR. (1992)

[44] Xiao, J., Ehinger, K., Oliva, A., Torralba, A., et al.: Recognizing scene
viewpoint using panoramic place representation. In: CVPR. (2012)

[45] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolu-
tions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2015) 1–9

[46] Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

[47] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimiza-
tion. In: JMLR. (2012)

14

Procedure 1 Forward propagation (training/inference time)
Input: 3D instance X , together with:

• projection function P (X,p) denoting the view captured from camera pose p
• proprioception function f(p) of the current position, which is known to the active vision system e.g. wrist position,

or gravity direction.
Output: ŷ, the predicted label for instance X .

1: procedure FORWARDONESTEP(t,at−1,pt−1, ât) . 1 forward propagation step
2: mt ← ACTOR(at−1, f(pt−1)) . motor command sampled from C to adjust camera
3: pt ← pt−1 + mt . camera pose update
4: xt ← P (X,pt) . capture new view
5: st ← SENSOR(xt,mt) . per-view processing
6: at ← AGGREGATOR(at−1, st) . evidence fusion
7: if t > 1 then . relevant only at training time
8: ât ← LOOKAHEAD(at−1,mt−1, f(pt)) . look-ahead prediction of current time-step feature
9: look-ahead error ζt ← d(at, ât)

10: return at,pt, ζt

11: a0 ← 0 . initialization
12: p0 ← random position
13: for t =1,2,. . .T do . move, observe, aggregate in a loop
14: at,pt, ζt ← FORWARDONESTEP(t,at,pt−1)

15: ŷ ← CLASSIFIER(at) . final class prediction
16: return ŷ

15

Fig. 7: The wet dry sand in this beach resembles old mud buildings, but once the agent looks up to see the sky and water at the horizon, it
becomes 96% confident of “beach”.

Fig. 8: The random starting view (at T=1) of the sky is not informative, but still enough to start guessing outdoor categories rather than indoor.
The architecture of the building facade suggests “plaza”, but with low confidence, at T = 2. When the system looks down to disambiguate
its top guesses (“plaza”— typically paved with brick and “street”— typically tarmac), it sees car wheels and tarmac, immediately suggesting
“street” with high confidence.

16

Fig. 9: The view shown to the agent at T = 1 suggests a store-front, and thus “shop”, but after exploring the scene and finding a large
indoor space near the shop, the agent revises its guess correctly to “lobby atrium”.

17

18

19

20

21

22

23

24

25

26

27

28

29

VIII. FAILURE CASES

30

Fig. 10: Failure case: the agent grows increasingly confident about its starting “mountain” guess as the sea and sand are restricted to small
portion of the original panorama (near the center of the view grid), and the agent observes neither of these.

31

Fig. 11: Failure case: ambiguous categories. This field with multi-colored flowers, neat paths for walking (seen at T=2 and 3), is easily
mistaken for a park.

Fig. 12: Failure case: overcorrecting during category disambiguation. The top category after the first two views is “street”, but confidence is
relatively low (40.29%) and “plaza courtyard” is the top competing category. The system therefore opts to look at the ground where streets
typically have tarmac patches, and plazas often have brick pavements. Unfortunately, this European street is brick-paved, and the system
over-corrects to guess “plaza courtyard”.

32

IX. RANDOM ACTION SELECTION

To illustrate the difficulty of the action selection task, we
show views selected by a random action selection baseline,
next to those selected by our method, starting from the same
starting view.

33

random actions

agent-selected actions

Fig. 13: The random agent selects all uninformative sky views, while the our agent selects disambiguating views

34

random actions

agent-selected actions

Fig. 14: The random agent views uninformative ground and sky views, while our agent starting at the same view, selects an informative
view of the street, and then reviews the pavement curb from a more favorable viewpoint.

