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Abstract. State-of-the-art navigation methods leverage a spatial mem-
ory to generalize to new environments, but their occupancy maps are lim-
ited to capturing the geometric structures directly observed by the agent.
We propose occupancy anticipation, where the agent uses its egocentric
RGB-D observations to infer the occupancy state beyond the visible re-
gions. In doing so, the agent builds its spatial awareness more rapidly,
which facilitates efficient exploration and navigation in 3D environments.
By exploiting context in both the egocentric views and top-down maps
our model successfully anticipates a broader map of the environment,
with performance significantly better than strong baselines. Further-
more, when deployed for the sequential decision-making tasks of explo-
ration and navigation, our model outperforms state-of-the-art methods
on the Gibson and Matterport3D datasets. Our approach is the win-
ning entry in the 2020 Habitat PointNav Challenge. Project page: http:
// vision. cs. utexas. edu/ projects/ occupancy_ anticipation/

1 Introduction

In visual navigation, an agent must move intelligently through a 3D environ-
ment in order to reach a goal. Visual navigation has seen substantial progress
in the past few years, fueled by large-scale datasets and photo-realistic 3D en-
vironments [4,9,74,69], simulators [74,34,3,38], and public benchmarks [13,3,38].
Whereas traditionally navigation was attempted using purely geometric repre-
sentations (i.e., SLAM), recent work shows the power of learned approaches
to navigation that integrate both geometry and semantics [79,20,56,41,77,11].
Learned approaches operating directly on pixels and/or depth as input can be ro-
bust to noise [11,10] and can generalize well on unseen environments [20,38,77,10]
—even outperforming pure SLAM given sufficient experience [38].

One of the key factors for success in navigation has been the movement
towards complex map-based architectures [20,46,11,10] that capture both ge-
ometry [20,11,10] and semantics [20,46,19,24], thereby facilitating efficient pol-
icy learning and planning. These learned maps allow an agent to exploit prior
knowledge from training scenes when navigating in novel test environments.

Despite such progress, state-of-the-art approaches to navigation are limited to
encoding what the agent actually sees in front of it. In particular, they build maps
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Fig. 1: Occupancy anticipation: A robot’s perception of the 3D world is limited
by its field-of-view and obstacles (the visible map). We propose to anticipate occu-
pancy for unseen regions (anticipated map) by exploiting the context from egocentric
views. We then train a deep reinforcement learning agent to move intelligently in a 3D
environment, rewarding movements that improve the anticipated map.

of the environment using only the observed regions, whether via geometry [11,24]
or learning [20,46,19,10]. Thus, while promising, today’s models suffer from an
important inefficiency: to map a space in the 3D environment as free or occupied,
the agent must directly see evidence thereof in its egocentric camera.

Our key idea is to anticipate occupancy. Rather than wait to directly observe
a more distant or occluded region of the 3D environment to declare its occupancy
status, the proposed agent infers occupancy for unseen regions based on the vi-
sual context in its egocentric views. For example, in Fig. 1, with only the partial
observation of the scene, the agent could infer that it is quite likely that the wall
extends to its right, a corridor is present on its left, and the region immediately
in front of it is free space. Such intelligent extrapolation beyond the observed
space would lead to more efficient exploration and navigation. To achieve this
advantage, we introduce a model that anticipates occupancy maps from normal
field-of-view RGB(D) observations, while aggregating its predictions over time in
tight connection with learning a navigation policy. Furthermore, we incorporate
the anticipation objective directly into the agent’s exploration policy, encour-
aging movements in the 3D space that will efficiently yield broader and more
accurate inferred occupancy maps.

We validate our approach on Gibson [74] and Matterport3D [9], two 3D envi-
ronment datasets spanning over 170 real-world spaces with a variety of obstacles
and floor plans. Using only RGB(D) inputs to anticipate occupancy, the pro-
posed agent learns to explore intelligently, achieving faster and more accurate
maps compared to a state-of-the-art approach for neural SLAM [10], and navi-
gating more efficiently than strong baselines. Furthermore, for navigation under
noisy actuation and sensing, our agent improves the state of the art, winning
the 2020 Habitat PointNav Challenge [1] by a margin of 6.3 SPL points.

Our main contributions are: (1) a novel occupancy anticipation framework
that leverages visual context from egocentric RGB(D) views; (2) a novel explo-
ration approach that incorporates intelligent anticipation for efficient environ-
ment mapping, providing better maps in less time; and (3) successful navigation
results that improve the state of the art.
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2 Related work

Navigation Classical approaches to visual navigation perform passive or active
SLAM to reconstruct geometric point-clouds [71,23] or semantic maps [5,55],
facilitated by loop closures or learned odometry [7,39,8]. More recent work
uses deep learning to learn navigation [79,20,56,41,77,75,59,64] or exploration
[48,6,57,28,51] policies in an end-to-end fashion. Explicit map-based navigation
models [21,46,19,11] usually outperform their implicit counterparts by being
more sample-efficient, generalizing well to unseen environments, and even trans-
ferring from simulation to real robots [20,10]. However, existing approaches only
encode visible regions for mapping (i.e., the ground plane projection of the ob-
served or inferred depth). In contrast, our model goes beyond the visible cues
and anticipates maps for unseen regions to accelerate navigation.

Layout estimation Recent work predicts 3D Manhattan layouts of indoor scenes
given 360 panoramas [80,76,70,73,15]. These methods predict structured out-
puts such as layout boundaries [80,70], corners [80], and floor/ceiling probability
maps [76]. However, they do not extrapolate to unseen regions. FloorNet [36]
and Floor-SP [29] use walkthroughs of previously scanned buildings to recon-
struct detailed floorplans that may include predictions for the room type, doors,
objects, etc. However, they assume that the layouts are polygonal, the scene is
fully explored, and that detailed human annotations are available. Our occu-
pancy map representation can be seen as a new way for the agent to infer the
layout of its surroundings. Unlike any of the above approaches, our model does
not make strict assumptions on the scene structure, nor does it require detailed
semantic annotations. Furthermore, the proposed anticipation model is learned
jointly with the exploration policy and without human guidance. Finally, unlike
prior work, our goal is to accelerate navigation and map creation.

Scene completion Past work in scene completion focuses on pixelwise reconstruc-
tion of 360 panoramas with limited glimpses [28,50,51,61], inpainting [49,26,35],
and inferring unseen 3D structure and semantics [68,78]. While some methods al-
low pixelwise extrapolation outside the current field of view (FoV) [51,68,78,27],
they do not permit inferences about occluded regions in the scene. Our re-
sults show that this limitation is detrimental to successful occupancy estimation
(cf. our view extrapolation baseline). SSCNet [67] performs voxelwise geometric
and semantic predictions for unseen 3D structures; however, it is computationally
expensive, requires voxelwise semantic labels, limits predictions to the agent’s
FoV, and needs carefully curated viewpoints for training. In contrast, our ap-
proach predicts 2D occupancy from egocentric RGB(D) views, and it learns to
do so in an active perception setting. Since the agent controls its own camera,
the viewpoints tend to be more challenging than those in curated datasets of
human-taken photos used in the scene completion literature [67,68,28,50,78].

Occupancy maps In robotics, methods for occupancy focus on building con-
tinuous representations of the world [45,53,62], mapping for autonomous driv-
ing [25,40,66,37,42], and indoor robot navigation [31,16,65]. Prior extrapolation
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methods assume wide FoV LIDAR inputs, only exploit geometric cues from top-
down views, and demonstrate results in relatively simple 2D floorplans devoid
of non-wall obstacles [32,31,16,65]. In contrast, our approach does not require
expensive LIDAR sensors. It operates with standard RGB(D) camera inputs,
and it exploits both semantic and geometric context from those egocentric views
to perform accurate occupancy anticipation. Furthermore, we demonstrate ef-
ficient navigation in visually rich 3D environments with challenging obstacles
other than walls. Finally, unlike prior work, our anticipation models are learned
jointly with a navigation policy that rewards accurate anticipatory mapping.

3 Approach

We propose an occupancy anticipation approach for efficient exploration and
navigation. Our model anticipates areas not directly visible to the agent because
of occlusion (e.g., behind a table, around a corner) or due to being outside its
FoV. The agent’s first-person view is provided in the form of RGB-D images (see
Fig. 2 left). The goal is to anticipate the occupancy for a fixed region in front of
the agent, and integrate those predictions over time as the agent moves about.

Next, we define the task setup and notation, followed by our approach for
occupancy anticipation (Sec. 3.1) and a new formulation for exploration that
rewards correctly anticipated regions (Sec. 3.2). Then, we explain how our occu-
pancy anticipation model can be integrated into a state-of-the-art approach [10]
for autonomous exploration and navigation in 3D environments (Sec. 3.3).

3.1 Occupancy anticipation model

We formulate occupancy anticipation as a pixelwise classification task. The ego-
centric occupancy is represented as a two-channel top-down map p ∈ [0, 1]2×V×V

which comprises a local area of V × V cells in front of the camera. Each cell in
the map represents a 25mm× 25mm region. The two channels contain the prob-
abilities (confidence values) of the cell being occupied and explored, respectively.
A cell is considered to be occupied if there is an obstacle, and it is explored if
we know whether it is occupied or free. For training, we use the 3D meshes of
indoor environments (Sec. 4.1) to obtain the ground-truth local occupancy of a
V ×V region in front of the camera, which includes parts that may be occluded
or outside the field of view (Fig. 2, bottom right).

Our occupancy anticipation model consists of three main components (Fig. 2):
(1) Feature extraction: Given egocentric RGB-D inputs, we compute:
RGB CNN features: We encode the RGB images using blocks 1 and 2 of a
ResNet-18 that is pre-trained on ImageNet, followed by three additional convo-
lution layers that prepare these features to be passed forward with the visible
occupancy map. This step extracts a mixture of textural and semantic features.
Depth projection: We estimate a map of occupied, free, and unknown space by
setting height thresholds on the point cloud obtained from depth and camera in-
trinsics [11]. Consistent with past work [11,10], we restrict the projection-based
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Fig. 2: Our occupancy anticipation model uses RGB(D) inputs to extract features, and
processes them using a UNet to anticipate the occupancy. The depth map is projected
to the ground plane to obtain the preliminary visible occupancy map. See text.

estimates to points within ∼ 3m, the range at which modern depth sensors would
provide reliable results. This yields the initial visible occupancy map.

(2) Feature encoding: Given the RGB-D features, we independently encode
them using UNet [54] encoders and project them to a common feature space. We
encode the depth projection features using a stack of five convolutional blocks
which results in features fd = fd1:5. Since the RGB features are already at a
lower resolution, we use only three convolutional blocks to encode them, which
results in features fr = fr3:5. We then combine these features using the Merge
module which contains layer-specific convolution blocks to merge each [fr

i ,f
d
i ]:

f = merge(fd,fr). (1)

For experiments with only the depth modality, we skip the RGB feature extrac-
tor and Merge layer and directly use the occupancy features obtained from the
depth image. For experiments with only the RGB modality, we learn a model
to infer the visible occupancy features from RGB (to be defined at the end of
Sec. 4.1) and use that instead of the features computed from the depth image.

(3) Anticipation decoding: Given the encoded features f , we use a UNet
decoder that outputs a 2× V × V tensor of probabilities:

p̂ = σ(Decode(f)), (2)

where p̂ ∈ [0, 1]2×V×V is the estimated egocentric occupancy and σ is the sigmoid
activation function. For training the occupancy anticipation model, we use binary
cross entropy loss per pixel and per channel:

L =

V 2∑
i=1

2∑
j=1

−
[
pij log p̂ij + (1− pij)log(1− p̂ij)

]
, (3)
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where p is the ground-truth (GT) occupancy map that is derived from the 3D
mesh of training environments (see Sec. S5 in Supp. for details).

So far, we have presented our occupancy anticipation approach supposing a
single RGB-D observation as input. However, our model is ultimately used in
the context of an embodied agent that moves in the environment and actively
collects a sequence of RGB-D views to build a complete map of the environment.
Next, we introduce a new reward function that utilizes the agent’s anticipation
performance to guide its exploration during training.

3.2 Anticipation reward for exploration policy learning

In visual exploration, an agent must quickly map a new environment without
having a specified target. Prior work on exploration [11,17,10,52] often uses
area-coverage—the area seen in the environment during navigation—as a re-
ward function to guide exploration. However, the traditional area-coverage ap-
proach is limited to rewarding the agent only for directly seeing areas. Arguably,
an ideal exploration agent would obtain an accurate and complete map of the
environment without necessarily directly observing all areas.

Thus, we propose to encourage exploratory behaviors that yield a correctly
anticipated map. In this case, the occupancy entries in the map need not be
obtained via direct agent observations to register a reward; it is sufficient to
correctly infer them. In particular, we reward agent actions that yield accurate
occupancy predictions for the global environment map, i.e., the number of grid
cells where the predicted occupancy matches the layout of the environment.

More concretely, let m̂t ∈ [0, 1]2×G×G be the global environment map ob-
tained by anticipating occupancy for the RGB-D observations {xr1:t, xd1:t} from
time 1 to t, and then geometrically registering the predictions to a single global
map based on the agent’s pose estimates at each time step (see Fig. 3). Note
G > V . Let m be the ground-truth layout of the environment. Then, the unnor-
malized accuracy of a map prediction m̂ is measured as follows:

Accuracy(m̂,m) =

G2∑
i=1

2∑
j=1

1[m̂ij = mij ], (4)

where 1[m̂ij = mij ] is an indicator function that returns one if m̂ij = mij and
zero otherwise. We reward the increase in map accuracy from time t− 1 to t:

Ranticp
t = Accuracy(m̂t,m)−Accuracy(m̂t−1,m). (5)

This function rewards actions leading to correct global map predictions, ir-
respective of whether the agent actually observed those locations. For example,
if the agent correctly anticipates free space behind a table and is rewarded for
that, it then learns to avoid spending additional time around tables in the fu-
ture to observe that space directly. Resources can be instead allocated to visiting
more interesting regions that are harder to anticipate. Additionally, this reward
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Fig. 3: Exploration with occupancy anticipation: We introduce two key upgrades
to the original Active Neural SLAM (ANS) model [10] (see text): (1) We replace the
projection unit in the mapper with our occupancy anticipation model (see Fig. 2). (2)
We replace the area-coverage reward function with the proposed reward (Eqn. 5), which
encourages the agent to efficiently explore and build accurate maps through occupancy
anticipation. Note that the reward signals (in red) are provided only during training.

provides a better learning signal while training under noisy conditions by ac-
counting for mapping errors arising from noisy pose and map predictions. Thus,
our approach encourages more intelligent exploration behavior by injecting our
anticipated occupancy idea directly into the agent’s sequential decision-making.

3.3 Exploration and navigation with occupancy anticipation

Having defined the core occupancy anticipation components, we now demon-
strate how our model can be used to benefit embodied navigation in 3D environ-
ments. We consider both exploration (discussed above) and PointGoal naviga-
tion [58,2], a.k.a PointNav, where the agent must navigate efficiently to a target
specified by a displacement vector from the agent’s starting position.

For both tasks, we adapt the state-of-the-art Active Neural SLAM (ANS)
architecture [10] that previously achieved the best exploration results in the
literature and was the winner of the 2019 Habitat PointNav challenge. However,
our anticipation model is generic and can be easily integrated with most map-
based embodied navigation models [20,11,18].

The ANS model is a hierarchical, modular policy for exploration that consists
of a mapper, a planner, a local policy, and a global policy (shown in Fig. 3). Given
RGB images, the mapper estimates the egocentric occupancy and agent pose,
and then temporally aggregates the maps into a global top-down map using the
pose estimates. At regular time intervals ∆, the global policy picks a location
on the global map to explore. A shortest-path planner decides what trajectory
to take from the current position to the target and picks an intermediate goal
(within 1.25m) to navigate to. The local policy then selects actions that lead
to the intermediate goal; it gets another intermediate goal upon reaching the
current goal. See [10] for details. Critically, and like other prior work, the model
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of [10] is supervised to generate occupancy estimates based solely on the visible
occupancy obtained from the egocentric views.

We adapt ANS by modifying the mapper and the reward function. For the
mapper, we replace the projection unit from ANS with our anticipation model
(see Fig. 3). Additionally, we account for incorrect occupancy estimates in two
ways: (1) we filter out high entropy predictions and (2) we maintain a moving
average estimate of occupancy at each location in the global map (see Sec. S7 in
Supp.). For the reward function, we use the anticipation-based reward presented
in Sec. 3.2.

We train the exploration policy with our anticipation model end-to-end, as
this allows adapting to the changing distribution of the agent’s inputs. Both the
local and the global reinforcement learning policies are trained with Proximal
Policy Optimization (PPO) [60]. In our model, the reward of the global policy
is our anticipation-based reward defined in Eqn. 5. This replaces the traditional
area-coverage reward used in ANS and other current models [11,10,52], which
rewards the increment in the actual area seen, not the correctly registered area
in the map. The reward for the local policy is simply based on the reduction
in the distance to the local goal: Rlocal

t = dt−1 − dt, where d is the Euclidean
distance between the current position and the local goal.

4 Experiments

In the following experiments we demonstrate that 1) our occupancy anticipation
module can successfully infer unseen parts of the map (Sec. 4.2) and 2) trained
together with an exploration and navigation policy, it accelerates active mapping
and navigation in new environments (Sec. 4.3 and Sec. 4.4).

4.1 Experimental setup

We use the Habitat [38] simulator along with Gibson [74] and Matterport3D [9]
environments. Each dataset contains around 90 challenging large-scale photo-
realistic 3D indoor environments such as houses and office buildings. On aver-
age, the Matterport3D environments are larger. Our observation space consists
of 128 × 128 RGB-D observations and odometry sensor readings that denote
the change in the agent’s pose x, y, θ. Our action space consists of three ac-
tions: move-forward by 25cm, turn-left by 10◦, turn-right by 10◦. For
navigation, we add a stop action, which the agent emits when it believes it
has reached the goal. We simulate noisy actuation and odometer readings for
realistic evaluation (see Sec. S6 in Supp.).

We train our exploration models on Gibson, and then transfer them to Point-
Goal navigation on Gibson and exploration on Matterport3D. We use the default
train/val/test splits provided for both datasets [38] with disjoint environments
across the splits. For evaluation on Gibson, we divide the validation environ-
ments into small (area less than 36m2) and large (area greater than 36m2) to
observe the influence of environment size on results. For policy learning, we use
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Method
IoU % F1 score %

free occ. mean free occ. mean

all-free 30.1 0 15.1 43.6 0 21.8
all-occupied 0 25.1 12.6 0 39.2 19.6
ANS(rgb) 12.1 14.9 13.5 19.6 24.9 22.5
ANS(depth) 14.5 24.1 19.3 23.1 37.6 30.4
View-extrap. 15.5 26.4 21.0 25.0 40.4 32.7

OccAnt(rgb) 44.4 47.9 46.1 58.2 62.9 60.6
OccAnt(depth) 50.4 61.9 56.1 63.8 75.0 69.4
OccAnt(rgbd) 51.5 61.5 56.5 64.9 74.8 69.8

Table 1: Occupancy anticipation results on the Gibson validation set. Our models,
OccAnt(·), substantially improve the map quality and extent, showing the advantage
of learning to anticipate 3D structures beyond those directly observed.

the Adam optimizer and train on episodes of length 1000 for 1.5 − 2 million
frames of experience. Please see Sec. S8 in Supp. for more details.

Baselines: We define baselines based on prior work:

– ANS(rgb) [10]: This is the state-of-the-art Active Neural SLAM approach
for exploration and navigation. We use the original mapper architecture [10],
which infers the visible occupancy from RGB.3

– ANS(depth): We use depth projection to infer the visible occupancy (sim-
ilar to [11]) instead of predicting it from RGB.

– View-extrap.: We extrapolate an 180◦ FoV depth map from 90◦ FoV RGB-
D and project it to the top-down view. This is representative of scene com-
pletion approaches [68,78]. See Sec. S11 in Supp. for network details.

– OccAnt(GT): This is an upper bound that cheats by using the ground-
truth anticipation maps for exploration and navigation.

We implement all baselines on top of the ANS framework. Our goal is to
show the impact of our occupancy model, while fixing the backbone navigation
architecture and policy learning approach across methods for a fair comparison.
We consider three versions of our models based on the input modality:

– OccAnt(depth): anticipate occupancy given the visible occupancy map.
– OccAnt(rgb): anticipate occupancy given only the RGB image. We replace

the depth projections in Fig. 2 with the pre-trained ANS(rgb) estimates (kept
frozen throughout training).

– OccAnt(rgbd): anticipate occupancy given the full RGB-D inputs.

By default, our methods use the proposed anticipation reward from Sec. 3.2. We
denote ablations without this reward as “w/o AR”.

3 We use our own implementation of ANS since authors’ code was unavailable at the time of our
experiments. See Sec. S7 in Supp. for details.
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4.2 Occupancy anticipation results

First we evaluate the per-frame prediction accuracy of the mapping models
trained during exploration. We evaluate on a separate dataset of images sampled
from validation environments in Gibson at uniform viewpoints from discrete lo-
cations on a 1m grid, a total of 1, 034 (input, output) samples. This allows
standardized evaluation of the mapper, independent of the exploration policy.

To quantify the local occupancy maps’ accuracy, we compare the predicted
maps to the ground truth. We report the Intersection over Union (IoU) and F1
scores for the “free” and “occupied” classes independently. In addition to the
baselines from Sec. 4.1, we add two naive baselines that classify all locations as
free (all-free), or occupied (all-occupied).

Table 1 shows the results. Our anticipation models OccAnt are substantially
better than all the baselines. Comparing different modalities, OccAnt(depth) is
much better than OccAnt(rgb) under all the metrics. This makes sense, as visible
occupancy is directly computable from the depth input, but must be inferred
for RGB (see Fig. 4). Interestingly, the rgbd models are not better than the
depth-only models, likely because (1) geometric cues are more easily learned
from depth than RGB, and (2) the RGB encoder contains significantly more
parameters and could lead to overfitting. See Table S5 in Supp. for network sizes.
Overall, Table 1 demonstrates our occupancy anticipation models successfully
broaden the coverage of the map beyond the visible regions.

4.3 Exploration results

Next we deploy our models for visual exploration. The agent is given a lim-
ited time budget (T=1000) to intelligently explore and build a 2D top-down
occupancy map of a previously unseen environment.

To quantify exploration, we measure both map quality and speed (number
of agent actions): (1) Map accuracy (m2): the area in the global map built
during exploration (both free and occupied) that matches with the ground-truth
layout of the environment. The map is built using predicted occupancy maps
which are registered using estimated pose (may be noisy). Note that this is
an unnormalized accuracy measure (see Eqn. 4). (2) IoU: the intersection over
union between that same global map and the ground-truth layout of the envi-
ronment. (3) Area seen (m2): the amount of free and occupied regions directly
seen during exploration. The map for this metric is built using ground-truth
pose and depth-projections (similar to [11,10]). (4) Episode steps: the number
of actions taken by the agent. While the first two metrics measure the quality
of the created map, the latter two are a function of how (and how long) the
agent moved to get that map. Higher accuracy in fewer steps or lower area-seen
is better.

All agents are trained on 72 scenes from Gibson under noisy odometry and
actuation (see Sec. 4.1), and evaluated on Gibson and Matterport3D under both
noisy and noise-free conditions.
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RGB-D ANS(rgb) ANS(depth) OccAnt(rgb)View-extrap. Ground truthOccAnt(depth)

Occupied
Free
Unknown

Fig. 4: Per-frame local occupancy predictions: First and last columns show the
RGB-D input and anticipation ground-truth, respectively. ANS(*) are restricted to
only predicting occupancy for visible regions. View-extrap. extrapolates, but is unable
to predict occupancy for occluded regions (first row) and struggles to make correct
predictions in cluttered scenes (second row). Our model successfully anticipates with
either RGB or depth. For example, in the first row, we successfully predict the presence
of a corridor and another room on the left. In the second row, we successfully predict
the presence of navigable space behind the table. In the third row, we are able to
correctly anticipate the free space behind the chair and the corridor to the right.

OccAnt(depth) ANS(depth)
Exploration trajectory Map created Exploration trajectoryMap created

t = 0 t = 1000

UnknownOccupied FreeCorrect: Incorrect: Occupied Free
Map prediction color scheme

Fig. 5: Exploration examples: We compare OccAnt with ANS [10] in Gibson under
noisy actuation and odometry. The exploration trajectories and the corresponding maps
are shown at the extremes and center, respectively. Row 1: Both methods cover similar
area, but our method better anticipates the unseen parts with fewer registration errors.
Row 2: Our method achieves better area coverage and mapping quality whereas the
baseline gets stuck in a small room for extended periods of time. Row 3: A failure case
for our method, where it gets stuck in one part of the house after anticipating that a
narrow corridor leading to a different room was occupied.



12 S. Ramakrishnan et al.

7LPH�VWHSV

��

��

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��

2FF$QW�GHSWK��

2FF$QW�UJEG��

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

0DS�DFFXUDF\��JLEVRQ�VPDOO��QRLV\�

7LPH�VWHSV

�

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��

2FF$QW�GHSWK��

2FF$QW�UJEG��

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

0DS�DFFXUDF\��JLEVRQ�ODUJH��QRLV\�

7LPH�VWHSV

�

��

��

��

���

���

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��

2FF$QW

2FF$QW

2FF$QW

2FF$QW

2FF$QW�UJE�

0DS�DFFXUDF\��PS�G��QRLV\�

7LPH�VWHSV

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��Z�R�$5

2FF$QW�GHSWK��Z�R�$5

2FF$QW�UJEG��Z�R�$5

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

$UHD�VHHQ��JLEVRQ�ODUJH��QRLV\�

Gibson small Gibson large Matterport3D

# Episode steps

Area seen (m2)

M
ap

 a
cc

ur
ac

y 
(m

2 )

7LPH�VWHSV

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��Z�R�$5

2FF$QW�GHSWK��Z�R�$5

2FF$QW�UJEG��Z�R�$5

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

$UHD�VHHQ��JLEVRQ�ODUJH��QRLV\�

7LPH�VWHSV

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��Z�R�$5

2FF$QW�GHSWK��Z�R�$5

2FF$QW�UJEG��Z�R�$5

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

$UHD�VHHQ��JLEVRQ�ODUJH��QRLV\�

7LPH�VWHSV

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��Z�R�$5

2FF$QW�GHSWK��Z�R�$5

2FF$QW�UJEG��Z�R�$5

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

$UHD�VHHQ��JLEVRQ�ODUJH��QRLV\�

7LPH�VWHSV

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��Z�R�$5

2FF$QW�GHSWK��Z�R�$5

2FF$QW�UJEG��Z�R�$5

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

$UHD�VHHQ��JLEVRQ�ODUJH��QRLV\�

7LPH�VWHSV

��

��

��

��

��� ��� ��� ��� ����

$16�UJE�

$16�GHSWK�

9LHZ�H[WUDS�

2FF$QW�UJE��Z�R�$5

2FF$QW�GHSWK��Z�R�$5

2FF$QW�UJEG��Z�R�$5

2FF$QW�GHSWK�

2FF$QW�UJEG�

2FF$QW�UJE�

$UHD�VHHQ��JLEVRQ�ODUJH��QRLV\�

Fig. 6: Exploration results: Map accuracy (m2) as a function of episode duration (top
row) and area seen (bottom row) for Gibson (small and large splits) and Matterport3D
under noisy conditions (see Sec. S1 in Supp. for noise-free). Higher and steeper curves
are better. Top: Our OccAnt approach rapidly attains higher map accuracy than the
baselines (dotted lines). Bottom: OccAnt achieves higher map accuracy for the same
area seen (we show the best variants here to avoid clutter). These results show the
agent actively moves better to explore the environment with occupancy anticipation.

Noisy test conditions Noise-free test conditions

Gibson small Gibson large Matterport3D Gibson small Gibson large Matterport3D

Method Map acc. IoU Map acc. IoU Map acc. IoU Map acc. IoU Map acc. IoU Map acc. IoU

ANS(rgb) [10] 18.5 55 35.0 47 44.7 18 22.4 76 43.4 64 53.4 23
ANS(depth) 18.5 56 39.4 53 72.5 26 21.4 74 48.0 72 85.9 34
View-extrap. 12.0 26 28.1 27 39.4 14 12.1 27 26.5 27 33.9 13

OccAnt(rgb) w/o AR 21.8 66 44.2 57 65.8 23 22.6 71 45.2 60 64.4 24
OccAnt(depth) w/o AR 20.2 58 44.2 54 92.7 29 24.9 84 54.1 75 . 104.7 38.
OccAnt(rgbd) w/o AR 16.9 45 35.6 40 76.3 23 24.8 84 52.0 71 98.7 34
OccAnt(rgb) 20.9 62 42.1 54 66.2 22 22.3 70 43.5 58 64.4 22
OccAnt(depth) 22.7 71 50.3 67 94.1 33 24.8 83 53.1 74 96.5 35
OccAnt(rgbd) 22.7 71 48.4 62 99.9 32 24.5 82 51.0 69 100.3 34

OccAnt(GT) 21.7 67 51.9 63 - - 26.1 93 65.4 91 - -

Table 2: Timed exploration results: Map quality at T=500 for all models and
datasets. See text for details.

Fig. 6 shows the exploration results. Our approach generally outperforms
the baselines, improving the map quality more rapidly, whether in terms of time
(top row) or area seen (bottom row). When compared on a same-modality ba-
sis, we see that OccAnt(rgb) converges much faster than ANS(rgb). Similarly,
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OccAnt(depth) is able to rapidly improve the map quality and outperforms
ANS(depth) on all cases. This apples-to-apples comparison shows that antici-
pating occupancy leads to much more efficient mapping in unseen environments.
Again, using depth generally provides more reliable mapping than pure RGB.

Furthermore, the proposed anticipation reward generally provides significant
benefits to map accuracy in the noisy setting (compare our full model to the
“w/o AR” models in Fig. 6). While map accuracy generally increases over time
for noise-free conditions (see Sec. S1 in Supp.), it sometimes saturates early
or even declines slightly over time in the noisy setting as noisy pose estimates
accumulate and hurt map registration accuracy. This is most visible in Gibson
small (top left plot). However, our anticipatory reward alleviates this decline.

Table 2 summarizes the map accuracy and IoU for all methods at T=500. Our
method obtains significant improvements, supporting our claim that occupancy
anticipation accelerates exploration and mapping. Additionally, perfect antici-
pation with the OccAnt(GT) model gives comparably good noisy exploration,
and good gains in noise-free exploration (+10-20% IoU). This shows that there
is indeed a lot of mileage in anticipating occupancy; our model moves the state-
of-the-art towards this ceiling. Fig. 5 shows example exploration trajectories and
the final global map predictions on Gibson.

4.4 Navigation results

Next we evaluate the utility of occupancy anticipation for quickly reaching a
target. In PointNav [58,2], the agent is given a 2D coordinate (relative to its
position) and needs to reach that target as quickly as possible. Following [10],
we use noise-free evaluation and directly transfer the mapper, planner, and local
policy learned during exploration to this task. In this way, instead of navigating
to a point specified by the global policy, the agent has to navigate to a fixed goal
location. To evaluate navigation, we use the standard metrics—success rate,
success rate normalized by inverse path length (SPL) [2], and time taken. The
agent succeeds if it stops within 0.2m of the target under a time budget of
T = 1000.

Table 3 shows the navigation results on the Gibson validation set. Our ap-
proach outperforms the baselines. Thus, not only does occupancy anticipation
successfully map the environment, but it also allows the agent to move to a spec-
ified goal more quickly by modeling the navigable spaces. This apples-to-apples
comparison shows that our idea improves the state of the art for PointNav. As
with exploration, using ground truth (GT) anticipation leads to good gains in
the navigation performance, and our methods bridge the gap between the prior
state of the art and perfect anticipation.

In concurrent work, the DD-PPO approach [72] obtains 0.96 SPL for Point-
Nav, but it requires 2.5 billion frames of experience to do so (and it fails for noisy
conditions; see below). To achieve the performance of our method (0.8 SPL in 2M
frames), DD-PPO requires more than 50× the experience. Our sample efficiency
can be attributed to explicit mapping along with occupancy anticipation.



14 S. Ramakrishnan et al.

Method SPL % Success % Time taken

ANS(rgb) [10] 66.8 87.9 254.109
ANS(depth) 76.8 86.6 226.161
View-extrap. 10.4 33.3 835.556

OccAnt(rgb) 71.2 88.2 223.411
OccAnt(depth) 77.8 91.3 194.751
OccAnt(rgbd) 80.0 93.0 171.874

OccAnt(GT) 89.5 96.0 125.018

Table 3: PointNav results: Our approach provides more efficient navigation.

Test standard Test challenge

Rank Team SPL % Success % Team SPL % Success %

1 OccupancyAnticipation 19.2 24.8 OccupancyAnticipation 20.9 27.5
2 ego-localization [14] 10.4 13.6 ego-localization [14] 14.6 19.2
3 Information Bottleneck 5.0 7.5 DAN [30] 13.2 25.3
4 cogmodel team 0.8 1.3 Information Bottleneck 6.0 8.8
5 UCULab 0.5 0.8 cogmodel team 0.7 1.2
6 Habitat Team (DD-PPO) [72] 0.0 0.2 UCULab 0.1 0.2

Table 4: Habitat Challenge 2020 results: Our approach is the winning entry.

Finally, we validate our approach on the 2020 Habitat PointNav Challenge [1],
which requires the agent to adapt to noisy RGB-D sensors and noisy actuators,
and to operate without an odometer. This presents a much more difficult evalu-
ation setup than past work which assumes perfect odometry as well as noise-free
sensing and actuation [38,10,72]. See Sec. S13 in Supp. for more details. Table 4
shows the results. Our method won the challenge, outperforming the competing
approaches by large margins. While our approach generalizes well to this setting,
DD-PPO [72] fails (0 SPL) due to its reliance on perfect odometry.

5 Conclusion

We introduced the idea of occupancy anticipation from egocentric views in 3D
environments. By learning to anticipate the navigable areas beyond the agent’s
actual field of view, we obtain more accurate maps more efficiently in novel
environments. We demonstrate our idea both for individual local maps, as well
as integrated within sequential models for exploration and navigation, where the
agent continually refines its (anticipated) map of the world. Our results clearly
demonstrate the advantages on multiple datasets, including improvements to the
state-of-the-art embodied AI model for exploration and navigation.
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This document provides additional information about the experimental set-
tings as well as qualitative and quantitative results to support the experiments
from the main paper. Below is a summary of the sections in the supplementary
file:

– (§S1) Noise-free exploration results
– (§S2) Occupancy anticipation ablation study
– (§S3) Occupancy anticipation qualitative examples
– (§S4) Exploration with occupancy anticipation examples
– (§S5) Generating ground-truth for occupancy anticipation
– (§S6) Noise models for actuation and odometry
– (§S7) Differences in ANS implementation
– (§S8) Implementation details
– (§S9) Occupancy anticipation architecture
– (§S11) View extrapolation baseline
– (§S12) Comparing the model capacities of different methods
– (§S13) Habitat challenge 2020

S1 Noise-free exploration results

As noted in the main paper, we evaluate on both noisy and noise-free conditions.
We showed the change in map accuracy as a function of episode steps and area
seen under noisy conditions in Fig. 6 in the main paper. We show the same re-
sults on noise-free conditions here in Fig. S1. Similar to the noisy case, OccAnt
approach (solid lines) rapidly leads to higher map accuracy when compared to
the baselines (dotted lines). However, we can see that adding the anticipation
reward (AR) in this noise-free setting does not lead to improvements in perfor-
mance in contrast to what was observed for the more realistic noisy setup (Fig.
5 in main).

As we will qualitatively demonstrate in Sec. S4, the main benefit of using the
anticipation reward is that it leads to better noise correction in the pose estimates
under noisy test conditions, resulting in more effective map registration. This
is due to the fact that achieving high AR (i.e., the map accuracy) inherently
depends on better map registration. If the per-frame maps are not registered
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correctly, AR is likely to be low even if the per-frame map estimates are very
good. Therefore, in addition to covering more area, the agent also has to better
train the pose estimator which would then lead to higher AR over time. Since
noise correction is not needed under noise-free conditions, using AR has limited
impact on the final performance.
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Fig. S1: Noise-free exploration results: Map accuracy (m2) as a function of episode
duration (top row) and area seen (bottom row) for Gibson (small and large splits) and
Matterport3D under noise-free conditions. Top: Our OccAnt approach (solid lines)
rapidly attains higher map accuracy than the baselines (dotted lines). Using anticipa-
tion reward (AR) largely retains the original performance in the noise-free conditions
(but improves significantly in the noisy conditions, see Fig. 5 main paper). Bottom:
OccAnt achieves higher map accuracy for the same area covered (we show best variants
here to avoid clutter). These results show the agent actively moves better to explore
the environment with our occupancy anticipation idea.

S2 Occupancy anticipation ablation study

As discussed in the main paper, our key contributions are a novel framework
for occupancy anticipation and a novel anticipation reward which encourages
the agent to build more accurate maps (as opposed to covering more area). To
isolate the gains achieved by these individual contributions, we view the results
from the main paper (Tables 1, 2, and 3 in main paper) in a different way. We
first group the results based on the modality (rgb/depth/rgbd), and further sort
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the methods based on whether they use occupancy anticipation (OccAnt) or
the anticipation reward (AR). We present these ablations for the per-frame map
evaluation (Table S1), the exploration evaluation (Table S2), and the navigation
evaluation (Table S3). By default, the ANS baselines do not use occupancy
anticipation or the anticipation reward and our methods always use occupancy
anticipation.

For per-frame maps, in Table S1 we see that adding occupancy anticipation
to the base model significantly improves the IoU and F1 scores as expected.
Adding the anticipation reward leads to comparable or better results, showing
that it leads to better training of the mapper during the exploration training.

For exploration, in Table S2 we see that adding occupancy anticipation gen-
erally leads to better map quality than ANS across different modalities and
testing conditions. Adding the anticipation reward (AR) leads to significant im-
provements in the map quality under noisy conditions for both depth and rgbd
modalities (rgb slightly underperforms). This is primarily due to improved train-
ing of the mapper module which leads to better map registration (see Sec. S4).
As we also noted in Sec. S1, using AR in noise-free conditions has limited im-
pact on the performance as the pose-estimation is assumed to be perfect in these
cases. It mainly benefits exploration in the more real-world testing scenarios with
noisy actuation and sensing.

For navigation, in Table S3 we see that adding occupancy anticipation leads
to significant improvements in all three metrics. The impact of using AR here
is limited because we assume noise-free test conditions for PointNav (follow-
ing [38,10]). However, the challenge results reported in the main paper remove
this assumption to test PointNav with noisy odometry and actuation.

S3 Occupancy anticipation qualitative examples

See Figs. S2 and S3 for some successful cases and failure cases for our best
method from Table S1 when compared with the baselines.

S4 Exploration with occupancy anticipation examples

In Table 2 and Fig. 6 from the main paper, and Table S2 in this supplementary,
we see that adding occupancy anticipation on top of the ANS baseline leads
to better performance, and adding anticipation reward (AR) leads to better
mapping in the noisy cases.

Here, we highlight some example episodes to show that (1) using occupancy
anticipation avoids local navigation difficulties and obtains higher map qualities
for lower area coverage (Fig. S4), while sometimes being susceptible to inaccura-
cies in map predictions (Fig. S5), and (2) the anticipation reward leads to better
map registration (i.e., good pose estimates) which results in higher map quality
(Fig. S6). The color scheme for the trajectories (from [38]) and the predicted
maps in the center (from [10]) are indicated below each plot.
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RGB ANS(rgb) ANS(depth) View-extrap. OccAnt(rgbd) GT

Occupied Free Unknown

Fig. S2: Occupancy anticipation successful cases: ANS(rgb) is trained to predict
the visible occupancy (2nd column) and ANS(depth) (3rd column) directly uses the
visible occupancy (within a 3m range). Both these methods are unable to account
for regions that are not visible or outside the sensing range. While View-extrap (4th
column) is able to expand beyond a 90◦ FoV, its predictions are often noisy and do
not include occluded regions. Also, the predictions are not guaranteed to be smooth in
the top-down projection as smoothness in the depth-image prediction space does not
necessarily lead to smoothness in the top-down maps, resulting in speckled outputs.
Our method OccAnt(rgbd) (5th column) is able to successfully anticipate occupancy
for regions that are occluded and outside the field-of-view with high accuracy (see
ground-truth in column 6).
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RGB ANS(rgb) ANS(depth) View-extrap. OccAnt(rgbd) GT

Occupied Free Unknown

Fig. S3: Occupancy anticipation failure cases: Our approach OccAnt(rgbd) in-
correctly predicts narrow corridors as occupied, and is unable to handle cases where
multiple solutions may exist. For example, in rows 2, 5 and 8, it predicts that the
corridors in the center of the map are blocked. In row 1, it predicts that the two doors
correspond to the same room, even though the wall colors are different and it is unlikely
that a small room would have two doors. In row 3, 4 and 6, it predicts entrances to
spaces that do not exist. Such predictions are generally difficult to make given only the
context of the current first-person view, and therefore our model tends to fail at these
cases.
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OccAnt(depth) w/o AR ANS(depth)

Occupied
Free

Unknown
Correct predictions Incorrect predictions

Occupied
Free

t = 0 t = 1000
Map prediction color scheme

Fig. S4: We enumerate some of the key advantages of exploration using occupancy
anticipation by comparing OccAnt(depth) w/o AR with ANS(depth) in Gibson under
noise-free conditions. The exploration trajectories and the map created during explo-
ration are shown at the extremes and the center, respectively. ‘ANS(depth) tends to
achieve worse exploration in some cases where the visible occupancy is incorrectly es-
timated (top 3 rows), causing the agent to get stuck in local regions. In other cases,
the map accuracy is generally higher for OccAnt(depth) w/o AR for similar amounts
of area seen (bottom 3 rows) as it is better at filling up the occupancy for unvisited
regions.
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OccAnt(depth) w/o AR ANS(depth)

Occupied
Free

Unknown
Correct predictions Incorrect predictions

Occupied
Free

t = 0 t = 1000
Map prediction color scheme

Fig. S5: We highlight one key weakness of exploration using occupancy anticipation,
which is the impact of classification errors in occupancy estimates. We compare Oc-
cAnt(depth) w/o AR with ANS(depth) in Gibson. In some cases, OccAnt(depth) w/o
AR tends to generate false negatives for occupied regions, classifying some of the ex-
plored obstacles as free-space (gray regions in the first 3 rows, 2nd column). While
this does not impact the area seen, it does reduce the map quality. On the flip side,
OccAnt(depth) w/o AR may prematurely classify some narrow corridors as blocked
(similar to Fig. S3) causing the agent to stop exploring beyond that corridor (light
green regions in last two rows, 2nd column).
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OccAnt(depth) OccAnt(depth) w/o AR

Occupied
Free

Unknown
Correct predictions Incorrect predictions
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Map prediction color scheme

Fig. S6: The impact of using anticipation reward: In Table 6 from the main paper
and Table S2 in Supp., we could see that models using anticipation reward generally
leads to higher map qualities in noisy test conditions. Here, we show that, when the
model that uses the anticipation reward (OccAnt(depth) on the left) accounts much
better for the noise in map registration when compared to a vanilla anticipation model
that does not use it (OccAnt(depth) w/o AR on the right).
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Method
IoU % F1 score %

OccAnt AR free occ. mean free occ. mean

ANS(rgb) 7 7 12.1 14.9 13.5 19.6 24.9 22.5
OccAnt(rgb) w/o AR 3 7 44.6 47.9 46.2 58.4 62.9 60.6
OccAnt(rgb) 3 3 44.4 47.9 46.1 58.2 62.9 60.6

ANS(depth) 7 7 14.5 24.1 19.3 23.1 37.6 30.4
OccAnt(depth) w/o AR 3 7 50.3 61.7 56.0 63.8 74.9 69.3
OccAnt(depth) 3 3 50.4 61.9 56.1 63.8 75.0 69.4

OccAnt(rgbd) w/o AR 3 7 50.1 60.5 55.3 63.6 74.1 68.8
OccAnt(rgbd) 3 3 51.5 61.5 56.5 64.9 74.8 69.8

Table S1: Per-frame occupancy anticipation ablation study

Noisy test conditions

Gibson small Gibson large Matterport3D

Method OccAnt AR Map acc. IoU % Map acc. IoU % Map acc. IoU %

ANS(rgb) [10] 7 7 18.46 55 34.95 47 44.70 18
OccAnt(rgb) w/o AR 3 7 21.77 66 44.15 57 65.76 23
OccAnt(rgb) 3 3 20.87 62 42.08 54 66.15 22

ANS(depth) 7 7 18.54 56 39.35 53 72.48 26
OccAnt(depth) w/o AR 3 7 20.22 58 44.18 54 92.70 29
OccAnt(depth) 3 3 22.74 71 50.30 67 94.12 33

OccAnt(rgbd) w/o AR 3 7 16.92 45 35.60 40 76.32 23
OccAnt(rgbd) 3 3 22.70 71 48.42 62 99.92 32

Noise-free test conditions

Gibson small Gibson large Matterport3D

Method OccAnt AR Map acc. IoU % Map acc. IoU % Map acc. IoU %

ANS(rgb) [10] 7 7 22.43 76 43.41 64 53.40 23
OccAnt(rgb) w/o AR 3 7 22.60 71 45.19 60 64.44 24
OccAnt(rgb) 3 3 22.32 70 43.52 58 64.35 22

ANS(depth) 7 7 21.39 74 48.01 72 85.91 34
OccAnt(depth) w/o AR 3 7 24.91 84 54.05 75 104.68 38
OccAnt(depth) 3 3 24.80 83 53.08 74 96.45 35

OccAnt(rgbd) w/o AR 3 7 24.80 84 51.99 71 98.70 34
OccAnt(rgbd) 3 3 24.51 82 50.97 69 100.25 34

Table S2: Timed exploration ablation: Map quality at T=500 for all models and
datasets.

Method OccAnt AR SPL % Success Rate % Time taken

ANS(rgb) [10] 7 7 66.8 87.9 254.109
OccAnt(rgb) w/o AR 3 7 71.2 88.2 223.411
OccAnt(rgb) 3 3 66.1 81.3 293.321

ANS(depth) 7 7 76.8 86.6 226.161
OccAnt(depth) w/o AR 3 7 78.6 92.2 187.358
OccAnt(depth) 3 3 77.8 91.3 194.751

OccAnt(rgbd) w/o AR 3 7 77.9 92.9 174.105
OccAnt(rgbd) 3 3 80.0 93.0 171.874

Table S3: PointGoal navigation ablation: Time taken refers to the average number
of agent actions required; the maximum time budget is T=1000.
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S5 Generating ground-truth for occupancy anticipation

Visible occupancy Region growing
iteration # 1

Region growing
iteration # 2 Full occupancy

Ground-truth

Fig. S7: Pipeline for generating anticipation ground-truth.

Using 3D meshes of indoor environments from Gibson and Matterport3D, we
obtain the ground-truth local occupancy of a V ×V region in front of the camera
which includes parts that may be occluded or outside the field-of-view (see Fig.2
from main paper). However, this may include regions in the environment that
are outside the bounds of the environment’s mesh. To alleviate this problem,
we devise a simple heuristic that generates the ground truth by masking out
regions in the occupancy map that are outside the bounds of the environment
(highlighted in Fig. S7).

We first obtain the visible occupancy via a geometric projection of the depth
inputs (2nd column). We then selectively sample the ground-truth layout (last
column) around the visible regions by growing a mask around the visible oc-
cupancy by sequential hole-filling and morphological dilation operations. We
perform two iterations of this region growing to obtain the final ground-truth
used to train our model (3rd & 4th columns). This heuristic captures the oc-
cupied regions that are closer to navigable space in the environment (likely to
be objects, walls, etc), while ignoring regions outside the bounds of the envi-
ronment. This is necessary since the occupancy map from the simulator does
not distinguish between obstacles and regions outside the bounds of the envi-
ronment mesh. Note that these steps apply only in training; during inference the
occupancy anticipation proceeds solely in the end-to-end model.

S6 Noise models for actuation and odometry

Following [10], we simulate realistic actuation and odometry to train and evaluate
our exploration agents. For this purpose, we use the PyRobot actuation model
provided by Habitat which consists of truncated Gaussians for both the rotation
and translation motions.3 Specifically, we use the default LoCoBot noise-model
with the ILQR controller. For simulating noise in the odometry, we similarly use

3 https://github.com/facebookresearch/habitat-sim/habitat_sim/agent/controls/pyrobot_noisy_
controls.py

https://github.com/facebookresearch/habitat-sim/habitat_sim/agent/controls/pyrobot_noisy_controls.py
https://github.com/facebookresearch/habitat-sim/habitat_sim/agent/controls/pyrobot_noisy_controls.py
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truncated Gaussians for both rotation and translation measurements. For the
translation measurement, we use a mean of 0.025m and a standard deviation
of 0.001 For the rotation measurement, we use a mean of 0.9◦ and standard
deviation of 0.057◦. The distributions are truncated at 2 standard deviations.
These are based on approximate values provided by the authors of ANS.

S7 Differences in ANS implementation

We implemented the ANS approach using the published details in [10] and in-
structions obtained directly from the authors via private communication as code
was not publicly available at the time of our research. Our implementation has a
few differences from that in [10], which we discuss in the following. For shortest
path planning, we use an A* planner instead of fast-marching [63] used in [10]
since we were able to find a fast A* implementation that was publicly available.4

For aggregating the local occupancy maps p̂t from each observation5 into the
global map m̂t−1 from the previous time-step , the authors in [10] use channelwise
max-pooling of the local and global maps to obtain the updated global map m̂t.

m̂t = ChannelwiseMax(m̂t−1, p̂t) (1)

Instead, we opt to perform a moving-average over time to allow the agent to
account for errors in the map prediction by averaging predictions from multiple
views over time.

m̂t = αem̂t−1 + (1− αe)p̂t (2)

We found that this provided robustness to false positives in the map predictions
and registration errors due to odometry noise.

Additionally, since our proposed model anticipates occupancy beyond the
visible regions, we found that it is helpful to filter out low-confidence predictions
of occupancy on a per-frame basis using the EntropyFilter() operation. Given
prediction p̂t, EntropyFilter() masks out the predictions for locations i, j in
p̂t where the binary-entropy of the probabilities across the map channels are
larger than a threshold τent before performing the moving-average aggregation.
These low-confidence predictions generally correspond to regions that are hard
to anticipate or may have multiple solutions. Hence, our global map update
formula is:

m̂t = αem̂t−1 + (1− αe)EntropyFilter(p̂t). (3)

4 A* implementation: https://github.com/hjweide/a-star
5 p̂t is the local map at t registered to the global coordinates using the agent’s pose estimate.

https://github.com/hjweide/a-star
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S8 Implementation details

The key hyperparameters for learning the policy and mapper are specified in
Table S4.

Policy learning

Optimizer Adam [33]
# processes 24
Learning rate 0.00025
Value loss coef 0.5
Entropy coef 0.001
Discount factor γ 0.99
GAE τ 0.95
Episode length 1000
# training frames 1.5-2 million
PPO clipping 0.2
PPO epochs 4
# PPO minibatches 16
Global policy ∆ 25
Global policy update interval 20
Global policy reward scaling 0.0001
Local policy reward scaling 1.0
Local policy update interval 25

Mapper learning

Optimizer Adam [33]
Learning rate 0.0001
Replay buffer size 25000
Mapper update interval 5
Mapper batch size 32
Mapper update batches 20
Map scale 0.05m
Local map size (V) 101
Global map size (G) 961
Aggregation factor (αe) 0.9

Table S4: Policy and mapper hyperparameters used to train our models

S9 Occupancy anticipation architecture

The architecture diagrams for the individual components of our occupancy an-
ticipation model (Fig. 2 in main paper) are shown in Figs. S8, S9, S10 and S11
with a brief description of the role of each module. We follow the PyTorch [47]
conventions to describe individual layers, with the tensor shapes represented in
(C, H, W) notations. The descriptions for individual layers are:
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– ConvBR: a combination of nn.Conv2d, nn.BatchNorm2d and nn.ReLU layers
with the arguments representing the input channels, output channels, kernel
size, stride and padding.

– MaxPool: an instantiation of the nn.MaxPool2d layer with the arguments
representing the kernel size, stride and padding.

– Conv: a nn.Conv2d layer with the arguments representing the input channels,
output channels, kernel size, stride and padding.

– AvgPool: an instantiation of the nn.AvgPool2d layer with the arguments
representing the kernel size, stride and padding.

– 2x Upsample: an instantiation of the nn.Upsample layer with a scaling factor
of 2.
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Fig. S8: RGB CNN features: extracts features from RGB images using ResNet18
blocks, and further processes the features to obtain compatible RGB features in a
top-down view.

S10 ANS projection unit architecture

The projection unit architecture for the ANS(rgb) baseline is shown in Fig. S12.
This is based on the architecture in [10] with some minor differences. It uses
nn.BatchNorm + nn.ReLU blocks instead of nn.Dropout in the fully connected
layers, it has a larger convolutional decoder to account for our larger map
outputs, and it consists of nn.Conv2d + nn.Upsample layers instead of than
nn.ConvTranspose2D layers as this has been shown to reduce checkerboard ar-
tifacts [44].

S11 View extrapolation baseline

We now provide more details on the task-defintion and architecture for the View-
extrap. baseline introduced in Sec. 4.1 in the main paper. The goal is to extrap-
olate 180◦ FoV depth from 90◦ FoV RGB-D inputs in order to evaluate the
performance of scene completion approaches [68,78]. Since Habitat [38] does
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Fig. S9: Feature encoding: The RGB features and visible occupancy are encoded
using independent UNet encoding layers. The expanded view of the “InConv” and
“Down” blocks are shown on the right. The encoded RGB and visible occupancy fea-
tures at different levels are fr

3:5 and fd
1:5, respectively.
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Fig. S10: MERGE: combines the RGB (fr
3:5) and visible occupancy (f1 : 5d) features

obtained from Feature encoding layers in a layerwise fashion to obtain a set of merged
features f = f1:5. Since the RGB features are not available at levels 1 and 2, it sim-
ply uses the visible occupancy features for those levels. The expanded view of the
“Mergei(F)” block is shown on the right.

not natively support panoramic rendering, we use a simpler solution to account
for this. We place two cameras with ±45◦ heading offsets and aim to regress
those from the egocentric view (see Fig. S13). Since each camera has a 90◦ FoV,
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Fig. S12: ANS projection unit: ResNet-18 features are extracted, followed by two
fully connected layers (represented by 1× 1 convolutions) and a convolutional decoder
that uses “Upsample” blocks to increase the output resolution and predict the occu-
pancy estimates p̂. Note that this is supervised to predict the visible occupancy map,
not the anticipated occupancy map (see Fig. 1 in main paper).

this leads to an effective coverage of 180◦ once the agent anticipates the unob-
served portions. We base our architecture for view extrapolation on the model
from [78] with a capacity similar to our model to permit online training during
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policy learning (see Fig. S14). It takes as input the 90◦ FoV RGB-D images and
regresses the left and right cameras. It is trained to minimize the pixelwise `1
loss between the prediction and the ground-truth.

Camera poses

Prediction Ground Truth

Fig. S13: View extrapolation task: Given the agent’s egocentric RGB-D input, we
predict the depth-map for two additional depth-sensors placed at 45◦ angles to the
left (purple) and right (green) of the central input (orange). These are geometrically
projected to the top-down view to obtain the occupancy estimates.
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Fig. S14: View extrapolation architecture [78]: The 90◦ FoV RGB and depth
inputs are independently encoded using Convolutional layers, concatenated and pro-
cessed using a UNet model. The decoded features from UNet are used to extrapolate
the final depth predictions. “DeconvBLr” uses nn.ConvTranspose2D to perform the
upsampling. Note that “ConvBLr” and “DeconvBLr” use nn.LeakyReLU(0.1) instead
of “nn.ReLU()”.
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S12 Comparing the model capacities of different methods

We compare the overall model capacity of our approaches with the baselines in
Table S5. The depth-only models (bottom 2 rows) tend to have fewer parame-
ters than the rgb-only models as they rely on geometric projection for processing
depth (no ResNet backbone). Our depth model has comparable number of pa-
rameters with the depth-only baselines. Our rgb model has slightly more param-
eters than the rgb baseline. However, this is due to the fact that OccAnt(rgb)
takes the output of ANS(rgb) as an additional input. However, since ANS(rgb)
is kept frozen throughout the training of OccAnt(rgb), this effectively gives us
5.7M trainable parameters.

Method Parameters (in millions)

ANS(rgb) 14.16
OccAnt(rgb) 19.86

ANS(depth) 0.87
OccAnt(depth) 1.72

Table S5: Comparing model capacity of different approaches

S13 Habitat Challenge 2020

We detail the key issues we had to address for the PointNav track of Habitat
Challenge 2020 [1] and the changes to our system required to achieve our state-
of-the-art results. Compared to the 2019 Habitat Challenge, there were two key
changes that increased the task difficulty:

Lack of GPS+Compass sensor: The presence of the GPS+Compass sensor used
in earlier challenges continually provides the agent with a perfect estimate of
the position and heading angle of the goal relative to its current position. Such
perfect localization has been exploited in the past by purely geometric [20] and
learned [72] approaches to achieve high-quality PointNav performance. However,
such high precision localization is hard to achieve in practice. The 2020 challenge
instead requires navigation in the absence of the GPS+Compass sensor. Instead,
the goal location is only specified initially at the start of the episode, requiring the
agent to accurately keep track of its position in the environment to successfully
reach the goal.

Noisy actuation and sensing: In the 2020 challenge, RGB-D sensing noise is
simulated artificially by using a Gaussian noise-model for the RGB sensor and
the Redwood noise model [12] for the depth sensor. Additionally, actuation noise
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in the robot motions is simulated by using a noise model obtained from the
LoCoBot [43].

We adapted our model in several ways to address these challenges. To address
the lack of GPS+Compass sensor, we used an online pose estimator that uses
RGB-D inputs xt and xt+1 to estimate the relative change in the pose ∆pt+1.
These pose changes are summed up over time to track the agent’s pose pt+1.
When compared to the original ANS model, we found that using RGB-D in-
puts gave slightly better estimates and was more computationally efficient than
using top-down maps. The pose estimator consists of a 6 convolutional layers
followed by 3 fully-connected layers to predict the pose for each modality (RGB,
depth) independently. The predictions are combined by using input-conditioned
weighting factors that are estimated using a learned MLP with 4 fully-connected
layers.

To handle noisy sensing, we train our occupancy anticipation model end-
to-end on the noisy inputs, which gave accurate predictions (see Fig. S15). We
found that OccAnt(depth) gave the best performance, and that adding RGB
information to occupancy anticipation did not lead to significant changes in
performance.

To deal with noisy actuation, we found that the learned pose estimator gave
robust estimates of the agent position. Despite having this pose estimator, we
experienced large drifts in the estimate over time due to high variance in the ac-
tuation noise. To partially mitigate this issue, we focused on efficient navigation
with safe planning that maintains sufficient distance from obstacles while plan-
ning shortest paths. In practice, we found that reducing the number of collisions
leads to faster navigation and lower drift in the pose estimates. We achieve this
by using a weighted variant of the classic A-star search algorithm [22].6

Additionally, we incorporated some simple heuristics from the original Active
Neural SLAM implementation to update the occupancy maps based on collisions,
and used an analytical local policy for navigation instead of a learned policy.

6 Weighted A-star implementation: https://github.com/srama2512/astar_pycpp

https://github.com/srama2512/astar_pycpp
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Fig. S15: Qualitative results from the 2020 Habitat Challenge: On the left, we
show the noisy RGB and depth inputs. On the right, we show the corresponding
anticipated and ground-truth occupancy. Our model learns to anticipate accu-
rately in the presence of noise.
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