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Abstract We present an active learning framework that pre-
dicts the tradeoff between the effort and information gain as-
sociated with a candidate image annotation, thereby ranking
unlabeled and partially labeled images according to their ex-
pected “net worth” to an object recognition system. We de-
velop amulti-label multiple-instance approach that accom-
modates realistic images containing multiple objects and al-
lows the category-learner to strategically choose what anno-
tations it receives from a mixture of strong and weak labels.
Since the annotation cost can vary depending on an image’s
complexity, we show how to improve the active selection by
directly predicting the time required to segment an unlabeled
image. Our approach accounts for the fact that the optimal
use of manual effort may call for a combination of labels
at multiple levels of granularity, as well as accurate predic-
tion of manual effort. As a result, it is possible to learn more
accurate category models with a lower total expenditure of
annotation effort. Given a small initial pool of labeled data,
the proposed method actively improves the category models
with minimal manual intervention.

Keywords Visual category learning· Active learning·
Multi-label · Multiple-instance learning· Cost prediction·
Cost sensitive learning

1 Introduction

One of the primary challenges in computer vision research
is the problem of recognizing generic object categories. Itis
challenging on a number of levels: objects of the same class
may exhibit an incredible variability in appearance, real-
world images naturally contain large amounts of irrelevant
background “clutter”, and subtle context cues can in many
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cases be crucial to proper perception of objects. Nonethe-
less, recent advances have shown the feasibility of learning
accurate models for a number of well-defined object cate-
gories.

Most visual recognition methods rely on labeled train-
ing examples where each class to be learned occurs promi-
nently in the foreground, possibly with uncorrelated clutter
surrounding it. In practice, the accuracy of a recognition al-
gorithm is often strongly linked to the quantity and quality
of the annotated training data available—having access to
more examples per class means a category’s variability can
more easily be captured, and having richer annotations per
image (e.g., a segmentation of object boundaries rather than
a yes/no flag on object presence) means the learning stage
need not infer which features are relevant to which object.

Unfortunately, this is a restrictive constraint, as substan-
tial manual effort is needed to gather such datasets. Yet, not
all images are equally informative, suggesting that a wiser
and more targeted use of human attention could make the
visual category learning process more effective.

Active learning strategies provide a way to reduce the re-
liance on labeled training data by minimizing the number of
labeled examples required to learn classifiers. They typically
do this by allowing the classifier to choose which example
needs to be labeled next from a large pool of unlabeled ex-
amples, reducing supervision without sacrificing much ac-
curacy in the model. The assumption is that while unlabeled
examples can be collected with little or no effort, providing
annotations on the examples entails non-trivial effort. Such
methods are therefore appealing for object recognition be-
cause of the abundance of unlabeled images (available, for
example, on the Web) and the substantial effort required to
provide detailed annotations.

However, in the general case, visual category learning
does not fit the mold of traditional active learning approaches,
which primarily aim to reduce the number of labeled exam-
ples required to learn a classifier, and almost always assume
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(a) Most real-world images contain multiple objects and can
therefore be associated with multiple labels.

(c) The actual manual effort required to label varies according to
annotation type and image example.
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(b) Useful image annotations can occur at multiple levels of gran-
ularity. For example, a learner may only know whether the im-
age contains a particular object or not (top row, dotted boxes de-
note object is present), or it may also have segmented foregrounds
(middle row), or it may have detailed outlines of object parts (bot-
tom row).

Fig. 1 Three important problems that need to be addressed while choosinginformative image data to label for recognition, none of whichare
considered by traditional active learning approaches.

a binary decision task. When trying to choose informative
image data to label for recognition, there are three important
distinctions we ought to take into account.

First, while many of today’s manually collected datasets
assume that the class to be learned occurs prominently in
the foreground and therefore can be associated with a single
label, most naturally occurring images consist of multiple
objects. Therefore, an image can be associated withmulti-
ple labels simultaneously as shown in Figure 1(a).1 This
means that an active learner must assess the value of an im-
age containing some unknown combination of categories.

Second, whereas in conventional learning tasks the an-
notation process consists of simply assigning a class label
to an example, image annotation can be done at different
levels—by assigning class labels, drawing a segmentation
of object boundaries, or naming some region (Figure 1(b)).
Richer annotations such as segmentations provide more in-
formation from which to infer class membership, but require
more effort on the part of the person providing supervision.
While recent work has begun to explore ways to reduce the
level of supervision (Weber et al (2000); Sivic et al (2005);
Quelhas et al (2005); Bart and Ullman (2005); Fergus et al
(2005); Li et al (2007); von Ahn and Dabbish (2004); Rus-
sell et al (2005); Verbeek and Triggs (2007)), such tech-
niques fail to address a key issue: to use a fixed amount of
manual effort most effectively may call for a combination
of annotation at different supervision levels. Therefore,in-
stead of ignoring annotations such as segmentations which
require more effort to obtain, we need a principled way of

1 Multi-label is thus more general thanmulti-class, where usually
each example is assumed to represent an item from a single class.

predicting the tradeoff between the effort and information
gain associated with any candidate image annotation. This
means an active learner must be able to choose from anno-
tations at multiple levels of granularity and specify not only
which example but also whattype of annotation is currently
most helpful.

Third, while previous methods implicitly assume that all
annotations cost the same amount of effort (and thus mini-
mize the total number of queries), the actual manual effort
required to label images varies both according to the anno-
tation type as well as the particular image example. For ex-
ample, completely segmenting an image and labeling all ob-
jects requires more time and effort than providing an image-
level tag specifying object presence. Even for the same type
of annotation, some images are faster to annotate than others
(e.g., a complicated scene versus an image with few objects,
as seen in Figure 1(c)).

In order to handle these issues, we propose an active
learning framework where the expected informativeness of
any candidate image annotation is weighed against the pre-
dicted cost of obtaining it (see Figure 2). To accommodate
the multiple levels of granularity that may occur in provided
image annotations, we pose the problem in the multiple-
instance learning setting (MIL). We show how to extend the
standard binary MIL setting to the multi-label case by de-
vising a kernel-based classifier formultiple-instance, multi-
label learning (MIML). We formulate an active learning func-
tion in the MIML domain that allows the system itself to
choose which annotations to receive, based on the expected
benefit to its current object models. After learning from a
small initial set of labeled images, our method surveys any
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Fig. 2 Overview of the proposed approach. (a) We learn object categories from multi-label images, with a mixture of weak and strong labels. (b)
The active selection function surveys unlabeled and partially labeled images, and for each candidate annotation, predictsthe tradeoff between its
informativeness versus the manual effort it would cost to obtain.(c) The most promising annotations are requested and used to updatethe current
classifier.

available unlabeled data to choose the most promising anno-
tation to receive next. After re-training, the process repeats,
continually improving the models with minimal manual in-
tervention.

Critically, our active learner chooses both which image
example as well as whattype of annotation to request: a
complete image segmentation, a segmentation of a single
object, or an image-level category label naming one of the
objects within it. Furthermore, since any request can require
a different amount of manual effort to fulfill, we explicitly
balance the value of a new annotation against the time it
might take to receive it. Even for the same type of annota-
tion, some images are faster to annotate than others. Humans
(especially vision researchers) can easily glance at an image
and roughly gauge the difficulty. Can we predict annotation
costs directly from image features? Learning with data col-
lected from anonymous users on the Web, we show that ac-
tive selection gains actually improve when we account for
the task’s variable difficulty.

Our main contributions are a unified framework for pre-
dicting both the information content and the cost of different
types of image annotations, and an active learning strategy
designed for the MIML learning setting. Our results demon-
strate that (1) the active learner obtains accurate models with
much less manual effort than typical passive learners, (2) we
can fairly reliably estimate how much a putative annotation
will cost given the image content alone, and (3) our multi-
label, multi-level strategy outperforms conventional active
methods that are restricted to requesting a single type of an-
notation.

2 Related Work

A number of research threads aim at reducing the expense of
obtaining well-annotated image datasets, from methods al-

lowing weak supervision (Weber et al (2000)), to those that
mine unlabeled images (Sivic et al (2005); Lee and Grau-
man (2008)). Other techniques reduce training set sizes by
transferring prior knowledge (Fei-Fei et al (2003)), or ex-
ploiting noisy images from the Web (Fergus et al (2005);
Vijayanarasimhan and Grauman (2008a)). Aside from such
learning-based strategies, another approach is to encourage
users to annotate images for free/fun/money (von Ahn and
Dabbish (2004); Russell et al (2005); Sorokin and Forsyth
(2008.)).

Active learning for visual categories has thus far received
relatively little attention. Active strategies typicallytry to
minimize model entropy or risk, and have been shown to ex-
pedite learning for binary object recognition tasks (Kapoor
et al (2007a)), relevance feedback in video (Yan et al (2003)),
dataset creation (Collins et al (2008)), and when there are
correlations between image-level labels (Qi et al (2008)).

The multiple-instance learning (MIL) scenario has been
explored for various image segmentation and classification
tasks (Maron and Ratan (1998); Vijayanarasimhan and Grau-
man (2008a); Zhou and Zhang (2006)). Multi-label variants
of MIL in particular are proposed in Zha et al (2008), with
impressive results. Active selection in the two-class MIL
setting was recently explored in Settles et al (2008), where
the classifier is initially trained on examples with bag-level
labels and active selection is performed to obtain instance-
level labels on some examples. However, previous active
learning methods are limited to learning from single-label
examples and making binary decisions. In contrast, our ap-
proach makes it possible to actively learn multiple classesat
once from images with multiple labels,and labels at mul-
tiple levels of granularity. The multi-label distinction is im-
portant in practice, since in a naturally occurring pool of un-
labeled data the images will not be restricted to containing
only one prominent object. Similarly, the multi-level ideais
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important since it will allow us to balance a mixture of an-
notation types.

In addition, most active learning approaches assume that
each training example requires the same amount of man-
ual effort resources to label. In reality, the effort involved
in providing supervision could vary significantly depend-
ing on a number of factors. A theme is emerging in the
learning community to quantify manual effort for different
learning tasks. In Kapoor et al (2007b) and Baldridge and
Osborne (2008), the length of a voice mail or sentence is
used to identify examples that could take more or less man-
ual effort to annotate. Budgeted learning for active classi-
fiers, which work on constrained budgets while querying at-
tributes on a test example, is explored in the work of Greiner
et al (2002) for medical diagnosis. In Haertel et al (2008)
regressors are learned based on sentence length, number of
characters, etc. to predict annotation time for document clas-
sification. While the length of a voice mail or the cost of a
medical diagnosis directly provides a measure of the cost of
an example, no such direct measure exists to quantify the ef-
fort involved in providing an image annotation. Thus far, no
existing approaches in object recognition attempt to quantify
or predict the amount of effort required to provide annota-
tions on image examples.

Overall, in contrast to this work, previous active learn-
ing methods for recognition only consider which examples
to obtain a class label for to reduce uncertainty (Yan et al
(2003); Kapoor et al (2007a); Collins et al (2008); Qi et al
(2008)), and generally are limited to binary and/or single-
label problems. None can learn from both multi-label image-
level and region-level annotations. Finally, to our knowl-
edge, no previous work has considered predicting the cost
of an unseen annotation, nor allowing such predictions to
strengthen active learning choices.

This paper expands on our previous conference publi-
cations (Vijayanarasimhan and Grauman (2008b, 2009)); in
this manuscript we provide a single framework to deal with
both binary and multi-class problems. We provide additional
results to demonstrate the robustness of our approach and il-
lustrations to better understand the main ideas.

3 Approach

The goal of this work is to learn category models with min-
imum supervision under the real-world setting where each
potential training image can be associated with multiple classes.
Throughout, our assumption is that human effort is more
scarce and expensive than machine cycles; thus our method
prefers to invest in computing the best queries to make, rather
than bother human annotators for an abundance of less use-
ful labelings.

We consider image collections consisting of a variety of
supervisory information: some images are labeled as con-

taining the category of interest (or not), some have both a
class label and object outlines, while others have no anno-
tations at all. We derive an active learning criterion function
that predicts how informative further annotation on any par-
ticular unlabeled image or region would be, while account-
ing for the variable expense associated with different anno-
tation types. Specifically, we show how to continually assess
the value of three different types of annotations: a label on
an image region, an image-level tag, and a complete seg-
mentation of the entire image (see Figure 8). We also refer
to these types as “levels”, since they correspond to different
levels of detail in the annotation. As long as the information
expected from further annotations outweighs the cost of ob-
taining them, our algorithm will request the next valuable
label, re-train the classifier, and repeat.

In the following, we introduce the MIL and MIML frame-
works and define a discriminative kernel-based classifier that
can deal with annotations at multiple levels (Section 3.1).
Then, we develop a novel method to predict the cost of an
annotation (Section 3.2.1). Finally, we derive a decision-
theoretic function to select informative annotations in this
multi-label setting, leveraging the estimated costs (Section 3.2.2).

3.1 Multi-label multiple-instance learning

An arbitrary unlabeled image is likely to contain multiple
objects. At the same time, typically the easiest annotationto
obtain is a list of objects present within an image. Both as-
pects can be accommodated in the multiple-instance multi-
label learning setting, where one can provide labels at mul-
tiple levels of granularity (e.g., image-level or region-level),
and the classifier learns to discriminate between multiple
classes even when they occur within the same example.

In the following, we extend SVM-based multiple-instance
learning (MIL) to the multi-label case. The main motivation
of our design is to satisfy both the multi-label scenario as
well as the needs of our active selection function. Specifi-
cally, we need classifiers that can rapidly be incrementally
updated, and which produce probabilistic outputs to esti-
mate how likely each label assignment is given the input.

In the MIL setting, as first defined by Dietterich et al
(1997), the learner is givensets (bags) of instances and told
that at least one example from a positive bag is positive,
while none of the members in a negative bag is positive. MIL
is well-suited for the image classification scenario where
training images are labeled as to whether they contain the
category of interest, but they also contain background clut-
ter. Every image is represented by a bag of regions, each of
which is characterized by its color, texture, shape, etc. (Maron
and Ratan (1998); Yang and Lozano-Perez (2000)). For pos-
itive bags, at least one of the regions contains the object
of interest. The goal is to predict when new image regions
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Fig. 3 In our MIML scenario, images are multi-label bags of regions
(instances). Unlabeled images are oversegmented into regions (a). For
an image withbag-level labels, we know which categories are present
in it, but we do not know in which regions (b). For an image with some
instance-level labels, we have labels on some of the segments (c). For
a fully annotated image, we have true object boundaries and labels (d).

BuildingBuilding

Tree Building vs TreeTree Building vs Tree Tree Building vs TreeTree Building vs Tree

Fig. 4 The intuition behind our multi-label kernel function.Left: In
MIML, if an image’s representation is independent of its label, two
different labels could map to the same point in feature space.Right:
Our Multi-label Set Kernel weighs instances based on the predicted
class membership, thereby associating specific regions within the im-
age to the provided labels. In the top image the region containing a
building (lighter shading) contributes more to the overall image rep-
resentation given the label “building”, while in the bottom image the
region containing a tree contributes more for the label “tree”.

contain the object—that is, to learn to label regions as fore-
ground or background. Since a positive instance is a posi-
tive bag containing a single instance, MIL can accommo-
date both region labels (instance-level) and image tags (bag-
level).

In the more general multiple-instance multi-label (MIML)
setting, each instance within a bag can be associated with
one ofC possible class labels; therefore each bag is associ-
ated with multiple labels—whichever labels at least one of
its instances has.

Formally, let{(X1, L1), (X2, L2), . . . , (XN , LN )} de-
note a set of training bags and their associated labels. Each
bag consists of a set of instancesXi = {xi

1, x
i
2, . . . , x

i
ni
},

and a set of labelsLi = {li1, l
i
2, . . . , l

i
mi

}, whereni denotes
the number of instances inXi, andmi denotes the number
of labels inLi. Note that often a bag has fewer unique la-

bels than instances (mi ≤ ni), since multiple instances may
have the same label. Every instancexi

j is associated with
a descriptionφ(xi

j) in some kernel embedding space and
some class labellik ∈ L = {1, . . . , C}, but with only the
bag-level labels it is ambiguous which instance(s) belongs
to which label. A bagXi has labell if and only if it contains
at least one instance with labell. Note that a labeled instance
is a special case of a bag, where the bag contains only one
example (ni = 1), and there is no label ambiguity.

For our purposes, an image is a bag, and its instances
are the oversegmented regions within it found automatically
with a segmentation algorithm (see Figure 3). A bag’s la-
bels are tags naming the categories present within the im-
age; a region (instance) label names the object in the par-
ticular region. Each region has a feature vector describing
its appearance. This follows the common use of MIL for
images (Maron and Ratan (1998); Zha et al (2008); Vijaya-
narasimhan and Grauman (2008b)), but in the generalized
multiple-instance multi-label case.

Our MIML solution has two components: first, we de-
compose the multi-class problem into a number of binary
problems, in the spirit of standard one-vs-one classification;
second, we devise aMulti-label Set Kernel that performs a
weighting in kernel space to emphasize different instances
within a bag depending on the category under consideration.

Each one-vs-one binary problem is handled by an SVM
trained to separate bags containing labelli from those con-
taininglj , for all i, j. For the single-label case, one can aver-
age a bag’s features to make a single feature vector summa-
rizing all its instances:φ(Xi) = 1

|Xi|

∑ni

j=1 φ(xi
j), and then

train an SVM with instances and bags; this is the Normal-
ized Set Kernel (NSK) approach of Gartner et al (2002). The
NSK is a kernel for sets, and is derived from the definition
of convolution kernels using the set-membership function.
In order to correct for the cardinality of the sets, a normal-
ization factor based on the 1 or 2-norm is introduced. For the
MIL setting, every instance in a bag can be seen as a member
of the bag, and the NSK corresponds to an averaging process
carried out in feature space. Bunescu and Mooney (2007)
show that the NSK approach can be construed as a balanc-
ing constraint on the positive bags. Intuitively, this means
thaton average we expect the label on a positive bag to be
greater than zero.

However, in the multi-label case, some bags could be as-
sociated withboth labelsli andlj . Simply treating the image
as a positive example when training both classes would be
contradictory (see Figure 4 (left)). Intuitively, when training
a classifier for classli, we want a bag to be represented by
its component instances that are most likely to have the label
li, and to ignore the features of its remaining instances. Of
course, with bag-level labels only, the assignment of labels
to instances is unknown.
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Fig. 5 This figure shows the reduction in risk for each example in the unlabeled pool plotted against the time required to provide an annotation
after training with 5 image tags (left) and 100 image tags (right ). There is not an absolute correlation between the cost of an annotation and how
informative it is, motivating the use of cost-sensitive active learning.

We therefore propose a Multi-label Set Kernel that weights
the feature vectors of each instance within the bag accord-
ing to the estimated probability that the instance belongs to
the class. That way if an instance has a high chance of be-
longing to the given class, then its feature vector will domi-
nate the representation (Figure 4 (right)). To this end, we de-
sign a class-specific feature representation of bags. LetX =
{x1, . . . , xn} be a bag containing labelsL = l1, . . . , lm
(where here we drop the example indexi for brevity). We
define the class-specific feature vector ofX for classlk as

φ
(

X(lk)
)

=

n
∑

j=1

Pr(lk|xj)φ(xj), (1)

which weights the component instances by their probabil-
ity of being associated with the class label under consider-
ation. HerePr(lk|xj) denotes thetrue probability that in-
stancexj belongs to categorylk, which we approximate
as Pr(lk|xj) ≈ p(lk|xj), wherep(lk|xj) is the posterior
probability output by the classifier using the training data
seen thus far. For a single instance (or equivalently, a single-
instance bag), there is no label ambiguity, so the instance is
simply represented by its feature vector.

For generic kernels, we may not know the feature space
mappingφ(x) needed to explicitly compute Eqn (1). In-
stead, we can apply the same feature weights via the kernel
value computation. LetX1 andX2 be bags associated with
labelsl1 andl2, respectively, that are currently being used to
construct a classifier separating classesl1 and l2. Then the
kernel value between bagsX1,X2 is given by

K(X
(l1)
1 ,X

(l2)
2 ) =

n1
∑

i=1

n2
∑

j=1

p(l1|x
1
i ) p(l2|x

2
j ) K(x1

i , x
2
j ),

whereK(x1
i , x

2
j ) = φ(x1

i )
T φ(x2

j ) is the kernel value com-
puted for instancesx1

i andx2
j , andp(l1|x

1
i ), p(l2|x

2
j ) are the

posteriors from the current classifiers. Note that because the
kernel is parameterized by the label under consideration, a
multi-label bag can contribute multiple different〈feature,label〉
pairs to the training sets of a number of the one-vs-one clas-
sifiers.

Our Multi-label Set Kernel can be seen as a generaliza-
tion of the NSK (Gartner et al, 2002), which is restricted
to single-label binary classification. It is also related tothe
kernel in (Kwok and Cheung, 2007), where weights are set
using a Diverse Density function. In contrast, we estimate
the class conditional probabilities using the classifier con-
structed with the currently available training data.

The proposed kernel is valid for both instances and bags,
and thus can be used to build SVMs for all required compo-
nent binary problems. Each SVM can accept novel instances
or bags: the feature for an input instance is unchanged, while
an input bag is weighted according to Eqn (1). Given a new
input Xnew, we (a) run it through all12C × (C − 1) clas-
sifiers, (b) compute the12C × (C − 1) resulting two-class
posteriors using the method of Platt (1999), and, finally, (c)
map those posteriors to the multi-class posterior probabili-
ties p(l|Xnew) for each labell ∈ {1, . . . , C}. For this last
step we use the pairwise coupling approach of Wu et al
(2004), where the pairwise class probabilities are used to
solve a linear system of equations to obtain the multi-class
probabilities.

While in this paper we have combined one-vs-one binary
problems to obtain a multi-class classifier, our method is not
restricted to this setting. Since our approach defines a kernel
for the multi-label problem, it can be used with other kernel-
based multi-class approaches, including one-vs-all SVMs.
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3.2 Active multi-level selection of multi-label annotations

Thus far we have defined the multi-label learner, the basic
classifier with which we want to actively learn. Next we de-
scribe our strategy to do active selection among candidate
annotations. For each candidate, the selection function mea-
sures its expected informativeness and subtracts its predicted
cost; the most cost-effective queries are those where infor-
mativeness outweighs effort. We first address how to pre-
dict cost (Section 3.2.1), followed by informativeness (Sec-
tion 3.2.2).

3.2.1 Predicting the cost of an annotation

There are three possible types of annotation request: the
classifier can ask for a label on a bag, a label on an instance
within a bag, or a label on all instances within a bag. A label
on a bag serves as a “flag” for class membership, which is
ambiguous because we do not know which of the instances
in the bag are associated with the label. A label on an in-
stance unambiguously names the class in a single image re-
gion, while labeling all instances within a bag corresponds
to fully segmenting and labeling an image. Figure 8 illus-
trates each of these three types.

Traditional active learning methods assume equal man-
ual effort per label, and thus try to minimize the total number
of queries made to the annotator. In reality annotation costs
will vary substantially from image to image, and from type
to type. Thus, the standard “flat cost” implied by traditional
active learners is inadequate.

To illustrate this idea more concretely, we ran an exper-
iment where we measured both the reduction in misclassifi-
cation risk produced by adding an annotation with its correct
label from an unlabeled pool of images and the time to ob-
tain the annotation. The misclassification risk is defined in
the standard way, as the probability of classifying each ex-
ample with an incorrect label, summed over all examples.
Figure 5 shows this result for all examples in the unlabeled
pool with three annotation types (segmentations, image tags
and region labels) for two different sizes of the initial train-
ing set (5 and 100 image tags respectively).

The figures suggest that neither more expensive nor less
expensive examples are regularly more useful than the other.
Similarly, the annotation that provides the best reductionin
risk might not be the most effective in terms of the cost of
obtaining it. For example, in Figure 5 (right) there are exam-
ples from all three annotation types with reductions in risk
above 200 units. While a standard “flat cost” active learner
would choose the more expensive segmentation (because
of the marginally higher reduction in risk) a cost-sensitive
learner might choose the less expensive one.

The figures also illustrate that while segmentations are
indeed more expensive to obtain, the larger reductions in risk

Fig. 6 Which image would you rather annotate? Humans can easily
glance at an image and roughly gauge the difficulty. This appears to be
true even without prior knowledge about the specific objects present in
the image (second row).

can effectively mitigate the cost for several examples. In ad-
dition, the relative risk reduction versus the annotation time
required is a function that continually changes as more anno-
tated data is acquired, as evident when we compare the total
shape of the scatter plots on the left (where only 5 examples
have been seen per class) and on the right (where 100 exam-
ples have been seen per class). Hence, to best reduce human
involvement, the active learner needs a quantitative measure
of the effort required to obtain any given annotation.

The goal is to accurately predict annotation time based
on image content alone—that is, without actually obtaining
the annotation, we need to estimate how long it will take
a typical annotator to complete it. As Figure 6 suggests, hu-
mans are able to predict the difficulty of annotating an image
even without prior knowledge about the objects occurring in
the image (second row) or other high-level cues. Therefore,
it seems plausible that the difficulty level of an image could
be predicted based on the image’s low-level features. For an
extreme example, if an image contains a single color it most
likely contains only one object, and so it should not be dif-
ficult to segment. If the image has significant responses to a
large number of filters, then it may be highly cluttered, and
so it could take a long time.

Thus, we propose to use supervised learning to estimate
the difficulty of segmenting an image. It is unclear what fea-
tures will optimally reflect annotation difficulty, and admit-
tedly high-level recognition itself plays some role. We select
candidate low-level features, and then use multiple kernel
learning to select those most useful for the task. Multiple
kernel learning approaches automatically select the weights
on the various features (kernels) by posing the problem as
an optimization of the coefficients of such a combination.
Lanckriet et al (2004) show that this reduces to a convex
optimization problem known as a quadratically-constrained
quadratic program (QCQP). Bach et al (2004) propose a
novel dual formulation of the corresponding QCQP as a second-
order cone programming problem to yield a formulation for
which the sequential minimal optimization (SMO) algorithm
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Interface on 

M h i l T kMechanical Turk

32 s, 

24 s24 s,

48 s, 

…

…

Fig. 7 Our interface on Mechanical Turk to collect annotation times
for segmenting images from anonymous users. The system times the
responses as users use a polygon-drawing tool to superimpose object
boundaries, and name and outline every major object.

can be applied. We use this SMO algorithm to select cost-
predictive features, since it allows efficient solutions for large-
scale problems.

We begin with some generic features that may be decent
indicators of image complexity: a histogram of oriented gra-
dients, a gray-scale histogram, and two new features based
on the edge density and color uniformity. The features are
designed to exploit the fact that more objects could lead to
more annotation time.

The edge density feature divides the image into a hierar-
chical grid of cells and concatenates the edge density within
each cell into a feature vector. We reason that edge density
could be a good indicator of the number of objects, since
with a larger number of objects in an image there are bound
to be more edges separating them. The hierarchy, by captur-
ing edge densities at multiple scales, helps in dealing with
objects of different scales.

The color uniformity feature computes the standard de-
viation of the r, g, b values of every pixel in the image based
on a small neighborhood surrounding it, and obtains a his-
togram of the standard deviations. With more objects we ex-
pect larger standard deviations in a neighborhood compared
to a small number of smoothly varying regions such as sky,
grass, etc.

We gather the data online, using Amazon’s Mechanical
Turk system, where we can pay anonymous users to seg-
ment images of our choosing. The users are given a polygon-
drawing tool to superimpose object boundaries, and are in-
structed to name and outline every major object (see Fig-
ure 7). The system times their responses. Thus the labels on
the training images will be the times that annotators needed
to complete a full annotation. To account for noise in the
data collection, we collect a large number of user responses
per image. Even if users generally have the same relative
speeds (faster on easy ones, slower on harder ones), their ab-
solute speeds may vary. Therefore, to make the values com-

parable, we normalize each user’s times by his/her mean and
use the average time taken on an image to be its target label.

We construct aχ2 RBF kernel over the training exam-
ples per image feature. Based on the timing obtained from
the anonymous users we divide the set of training images
into a discrete range of “easy” and “hard” images using the
mean time over all the images. We then use the MKL ap-
proach of Bach et al (2004) to learn the weights on the im-
age features for the binary classification problem of classi-
fying images into “easy” and “hard” categories. Using the
obtained combined kernel, we also learn a cost predictor
function using Support Vector Regression (SVR).

From this we can build a cost functionC(z) that takes
a candidate annotationz as input, and returns the predicted
time requirement (in seconds) as output. Whenz is a candi-
date full segmentation, we apply the learned function to the
image. Whenz is a request for a tag (bag-level label), we set
C(z) as the cost estimated using similar time-based experi-
ments. Finally, whenz entails outlining a single object, we
estimate the cost as the full image’s predicted time, divided
by the number of segments in the image.

3.2.2 Predicting the informativeness of an annotation

Given this learned cost function, we can now define the com-
plete MIML active learning criterion. Inspired by the classic
notion of thevalue of information (VOI), and by previous
binary single-label active learners (Kapoor et al (2007b)),
we derive a measure to gauge the relative risk reduction a
new multi-label annotation may provide. The main idea is
to evaluate the candidate images and annotation types, and
predict which combination (of image+type) will lead to the
greatest net decrease in risk for the current classifier, when
each choice is penalized according to its expected manual
effort. In contrast to previous VOI methods, our measure en-
ables the multi-label setting and considers multiple typesof
annotations to select from.

Defining the risk terms. At any stage in the learning
process the dataset can be divided into three different pools:
XU , the set of unlabeled examples (bags and instances);XL,
the set of labeled examples; andXP , the set of partially la-
beled examples, which contains all bags for which we have
only a partial set of bag-level labels (refer back to Figure 3).
If the label on an image is considered to be a binary vector
of lengthC, then the images inXL are examples where the
binary label vector is completely known. Images inXU are
examples where none of the labels are known, and images in
XP are examples where some of the elements in the vector
and labels on some of its instances are known. An example
is moved fromXU to XP when any one of its unknown la-
bels is requested. An example is moved fromXP toXL only
when the labels on all its instances have been obtained.
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(a) Name an object in the image (unla-
beled bag).

(b) Label the specified region (unlabeled
instance).

TreeSky

Building

People Grass

(c) Segment the image and name all ob-
jects (label all instances).

Fig. 8 The three candidate annotation types (or “levels”) that our approach chooses from when formulating a request.

Let rl denote the risk associated with misclassifying an
example belonging to classl. The risk associated withXL

is:

R(XL) =
∑

Xi∈XL

∑

l∈Li

rl (1 − p(l|Xi)) , (2)

wherep(l|Xi) is the probability thatXi is classified with
label l. Here,Xi is again used to denote both instances and
bags andLi its label(s). IfXi is a training instance it has
only one label, and we can computep(l|Xi) via the current
MIML classifier.

If Xi is a multi-label bag in the training set, we compute
the probability it receives labell as follows:

p(l|Xi) = p
(

l|xi
1, . . . , x

i
ni

)

= 1 −

ni
∏

j=1

(1 − p(l|xi
j)). (3)

For a bag tonot belong to a class, it must be the case that
none of its instances belong to the class. Thus the probability
of a bagnot having a label is equivalent to the probability
thatnone of its instances have that class label.

The MIML classifier implicitly assumes that every im-
age/instance can be classified into one ofC labels. However,
in the more general case, the dataset can also contain images
that do not necessarily belong to theC classes. Such images
are given a “negative” label which specifies that none of the
instances/regions in the image belong to any of the classes
in {1, . . . , C}, similar to the “negative” label in a standard
MIL formulation. In this case, we weightp(l|Xi) with the
probability ofXi belonging to any one of theC classes as
against the “negative” class, which is obtained by training
a standard MIL classifier. Note that whenC = 1, a single
foreground class, the above reduces to the standard MIL so-
lution sincep(l|Xi) is trivially 1. Similarly, in the absence of
a “negative” class the above reduces to the MIML solution.

The corresponding risk for the unlabeled data is:

R(XU ) =
∑

Xi∈XU

C
∑

l=1

rl(1 − p(l|Xi)) Pr(l|Xi), (4)

where we compute the probabilities for bags using Eqn. 3,
andPr(l|Xi) is the true probability that unlabeled example
Xi has labell, approximated asPr(l|Xi) ≈ p(l|Xi).

For the partially labeled data, the risk is:

R(XP ) =
∑

Xi∈XP

∑

l∈Li

rl (1 − p(l|Xi)) (5)

+
∑

l∈Ui

rl (1 − p(l|Xi)) p(l|Xi),

whereUi = L \ Li.
The valuerl is the risk associated with misclassifying

an example belonging to classl, specified in the same units
as the cost function in Section 3.2.1. Intuitively, it should re-
flect the real cost of a classification mistake, as our algorithm
directly trades off the cost of the manual labeling against
the damage done by misclassification. While this can be set
based on realistic system requirements, we interpret it as the
cost of manually fixing a classification error (e.g., an aver-
age segmentation requires 50 secs). If one preferred to avoid
errors on a particular class, that could be encoded with vari-
ablerl values per class labell. Note thatrl is not a parameter
that needs to be optimized for performance; rather, it gives
flexibility for situations that have real costs associated with
the task.

Computing the value of information. The total cost
T (XL,XU ,XP ) associated with a given snapshot of the data
is the total misclassification risk, plus the cost of obtaining
all the labeled data thus far:

T (XL,XU ,XP ) = R(XL) + R(XU ) + R(XP ),

+
∑

Xi∈XB

∑

l∈Li

C(X l
i),

whereXB = XL ∪ XP , andC(·) is defined in Section 3.2.1.
We measure the utility of obtaining a particular annota-

tion by predicting the change in total cost that would result
from the addition of the annotation toXL. Therefore, the
value of information for an annotationz is:

V OI(z) = T (XL,XU ,XP ) − T
(

X̂L, X̂U , X̂P

)

(6)

= R(XL) + R(XU ) + R(XP )

−
(

R(X̂L) + R(X̂U ) + R(X̂P )
)

− C(z),
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whereX̂L, X̂U , X̂P denote the set of labeled, unlabeled and
partially labeled data after obtaining annotationz. Note that
z could be any one among the three annotation types de-
scribed in Figure 8. If all the labels on the example have been
obtained throughz then the example is moved to the labeled
pool, i.e.,X̂L = XL ∪ z. On the other hand, if the example
contains instances (regions) with no label information even
after obtaining annotationz then the example is moved to
the set of partially labeled data, i.e.,̂XP = XP ∪ z. Simi-
larly, the example associated withz is removed fromXU or
XP as appropriate.

A high VOI for a given input denotes that the total cost
would be decreased by adding its annotation. So, the classi-
fier seeks annotations that give maximal VOI values.

Estimating risk for candidate annotations. The VOI
function relies on estimates for the risk of yet-unlabeled
data, so we must predict how the classifier will change given
the candidate annotation, without actually knowing its la-
bel(s). We estimate the total risk induced by incorporatinga
candidate annotationz using the expected value:R(X̂L) +

R(X̂U )+R(X̂P ) ≈ E[R(X̂L)+R(X̂U )+R(X̂P )], hence-
forth denoted byE.

If the annotationz will label an unlabeled instance (Fig-
ure 8(b)), computing the expectation is straightforward, since
that instance can simply be removed fromXU and added to
XL to evaluate the risk were it assigned each of theL possi-
ble labels in turn:

E =
∑

l∈L

(

R(XL ∪ z
(l)) + R({XU ,XP } r z)

)

Pr(l|z),

(7)

whereL = {1, . . . , C} is the set of all possible label as-
signments forz. The valuePr(l|z) is obtained by evaluat-
ing the current classifier onz and mapping the output to
the associated posterior, and risk is computed based on the
(temporarily) modified classifier withz(l) inserted into the
labeled set. Similarly, if the candidate annotationz will add
an image-level label to an unlabeled or partially labeled bag
(Figure 8(a)), thenPr(l|z) is calculated using Eqn. 3.

However, if the annotationz entails fully segmenting
and labeling an image withM automatically segmented re-
gions (Figure 8(c)), we need to calculate the utility of obtain-
ing the joint set of labels for all of a bag’s instances. Since
there areCM possible labelings:L = {1, . . . , C}M , a direct
computation of the expectation is impractical. Instead we
use Gibbs sampling to draw samples of the label assignment
from the joint distribution over theM instances’ descrip-
tors. Letz = {z1, . . . , zM} be the bag’s instances, and let

z
(a) =

{

(z
(a1)
1 ), . . . , (z

(aM )
M )

}

denote the label assignment

we wish to sample, withaj ∈ {1, . . . , C}. To sample from
the conditional distribution of one instance’s label giventhe
rest—the basic procedure required by Gibbs sampling—we

Current
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on image #32 ”

Effort
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functionmodels on image #32.function

?

Human

annotatorSelection

?
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Labeled,
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Fig. 9 The summary of our approach. After learning from a small
initial set of labeled images, our method surveys any available unla-
beled and partially labeled data. The VOI of every candidateannota-
tion among three different types of annotations is computed using the
expected change in risk and the predicted effort of obtainingthe an-
notation given by our cost predictor. The annotation and example with
the largest VOI is then selected and a human provides the annotation,
after which the example is moved from the unlabeled/partiallylabeled
pool to the partially/fully labeled pool as appropriate. The process re-
peats until there are no more examples with positive VOI, or oncethe
allowed annotation cost limit has been reached.

re-train the classifier with the given labels added, and then
draw the remaining label according toaj ∼ Pr(l|zj), for
l ∈ {1, . . . , C}, wherezj denotes the one instance currently
under consideration. For bagz, the expected total risk is then
the average risk computed over all samples:

E =
1

S

S
∑

k=1

(R({XL r z} ∪ {z
(a1)k

1 , . . . , z
(aM )k

M })

+ R(XU r {z1, z2, . . . , zM}) + R(XP )), (8)

wherek indexes theS samples. We compute the risk onXL

for each fixed sample by removing the bagz from the un-
labeled or partially labeled pool, and inserting its instances
with the label given by the sample’s label assignment. Note
that while computing the VOI of a candidate annotation we
have no supervision information on that example, includ-
ing the object outlines. Hence, the computation of VOI is
performed using segments/regions generated using an auto-
matic segmentation algorithm. Once we obtain a complete
segmentation of an image from the annotator, we use the
actual region outlines and labels to retrain the classifier.

Computing the VOI values for all unlabeled data, espe-
cially for the positive bags, requires repeatedly solving the
classifier objective function with slightly different inputs;
to make this manageable we employ incremental SVM up-
dates (Cauwenberghs and Poggio, 2000).
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Fig. 10 Example images from the SIVAL dataset. Each row illustrates
one of the 25 objects.

3.3 Summary of the algorithm

We can now actively select multi-label, multi-level image
annotations so as to maximize the expected benefit relative
to the manual effort expended. The MIML classifier is ini-
tially trained using a small number of tagged images. To get
each subsequent annotation, the active learner surveys allre-
maining unlabeled and partially labeled examples, computes
their VOI, and requests the label for the example with the
maximal value. After the classifier is updated with this label,
the process repeats. Figure 9 provides a high-level summary
of the approach. The final classifier can predict image- and
region-level labels, in binary or multi-class settings.

4 Results

To validate our method we use two publicly available datasets,
the SIVAL2 dataset and the MSRC3 dataset, since they have
been used to evaluate previous MIL and MIML based ap-
proaches which allows us to compare with state-of-the-art
methods in the two settings. Additionally, the MSRC is a
common benchmark for multi-class object segmentation.

The SIVAL dataset contains images from 25 objects in
cluttered backgrounds, while the MSRC v2 contains 591 im-
ages from 21 classes and a variable number of objects per
image, with 240 images and 14 classes in the (subset) v1.
See Figures 10 and 11 for examples. In all MSRC experi-
ments we use an RBF kernel withγ = 10, and set the SVM
parameters (including the sigmoid parameters for the SVM
probabilistic outputs given by the method of (Platt, 1999))
based on cross-validation. We ignore all “void” regions in
the MSRC images.

In the following subsections, we evaluate five aspects of
our approach: (1) its accuracy when learning from multi-

2 http://www.cs.wustl.edu/accio/
3 http://research.microsoft.com/en−us/projects/objectclassrecognition/

Fig. 11 Example images from the MSRC dataset. The MSRC dataset
contains 21 categories, and most images have multiple categoriesin
them (eg: “building”, “road”, “sky”, “tree”).

Approach
Ave. AUROC Ave. AUROC

(img) (region)
Ours 0.896± 0.00 0.91± 0.01

MLMIL (Zha et al, 2008) 0.902 0.863

Table 1 Five-fold cross-validation accuracy when training with only
image-level labels.

label examples, (2) its ability to accurately predict anno-
tation costs, (3) its effectiveness as an active learner when
selecting from three different types of annotations on both
binary and multi-label problems, (4) the effect of introduc-
ing the cost predictor in the active selection function, and
(5) the robustness of our approach with respect to the initial
training set.

4.1 Multi-label visual category learning with the MSK

In our first experiment, we evaluate our proposed multi-label
set kernel classifier’s effectiveness in learning using only
image-level labels on images containing multiple objects.
We divide the MSRC v2 into five folds containing about an
equal number of images, as is done by Zha et al (2008). We
choose one part as the test set, one to set parameters, and
train on the rest. We segment the images with Normalized
Cuts into a small number of segments (10 in our experi-
ments). For each segment we then obtain texton and color
histograms, as in (Shotton et al, 2006). We learn a dictionary
of textons by convolving the images with a 38-dimensional
filter bank and running K-means clustering to obtain 420
textons. For color histograms we obtain a 120-dimensional
vector by concatenating a 40-dimensional histogram of each
channel of the LUV representation of the image.

Each image is a bag, and each segment is an instance.
To learn the MIML classifier, we use only image-level (bag-
level) labels, i.e., we withhold all the pixel-level labelsdur-
ing classifier training. We first compare against the approach
of Zha et al (2008), who provide state-of-the-art results on
the MSRC dataset while learning from image-level labels.

Table 1 shows the average AUROC when predicting la-
bels on newimages (second column) or newregions (third



12

column). For image-level prediction our results are com-
parable to the state-of-the-art in MIML (Zha et al (2008)),
whereas for region-level prediction we achieve a notable im-
provement (0.91 vs. 0.86). This appears to be a direct con-
sequence of our Multi-label Set Kernel, which weighs the
region descriptors so as to represent an image by its most
relevant instances for each image-level label. As a result,we
are able to directly separate novel regions from each class
within a new image, and not just name objects that occur in
it.

Next we compare against the approaches of Shotton et al
(2006) and Winn et al (2005), which use pixel-level labels
(full segmentations) to train a multi-class classifier. Restrict-
ing our method to only image-level labels, we obtain a region-
based accuracy of64.1% ± 2.9 over five trials of approxi-
mately equal train-test splits. In comparison, the accuracy
obtained for the same test scenario is 70.5% in Shotton et al
(2006), and 67.6% in Winn et al (2005). Using both region-
and bag-level labels we obtain an accuracy of66.3%. Thus
with much less manual training effort (image tags), our method
performs quite competitively with methods trained with full
segmentations; this illustrates the advantage of the multi-
label multi-instance learner in effectively utilizing weaker
supervision.

Finally, using the NSK (Gartner et al (2002)), which es-
sentially removes our kernel weight mapping, the accuracy
for this test would only be55.95% ± 1.43. This result indi-
cates that the proposed method to map different regions to
the image-level labels is more effective.

4.2 Actively learning visual objects and their foreground
regions

In this section we demonstrate our approach to actively learn
visual categories for both the binary setting, where an image
contains a single object of interest in a cluttered background
as well as the multi-label setting, where an image contains
multiple familiar objects that must be segmented and classi-
fied. We test both datasets described above.

We provide results by simulating the active learning pro-
cess: when the system requests an annotation on an image
example, we satisfy the request using the ground truth la-
bels. For instance, when the request is to outline all the ob-
jects in the image, we use the ground truth segmentation
provided with the dataset (SIVAL/MSRC) to obtain all the
objects and their labels. However, recall that when calculat-
ing the VOI of a region/image, the system uses an automatic
low-level segmentation of the image.

4.2.1 Active selection from MIL data

For the binary MIL setting, we provide comparisons with
single-level active learning (with both the method of Set-

tles et al (2008), and where the same VOI function is used
but is restricted to actively label only instances), as wellas
passive learning. For the passive baseline, we consider ran-
dom selections from amongst both single-level and multi-
level annotations, in order to verify that our approach does
not simply benefit from having access to more informative
possible labels.

The SIVAL dataset contains 1500 images, each labeled
with one of 25 class labels. The cluttered images contain
objects in a variety of positions, orientations, locations, and
lighting conditions. The images have been oversegmented
into about 30 regions (instances) each, each of which is rep-
resented by a 30-d feature capturing the average color and
texture values of the segment and each of its cardinal neigh-
bors. These features are provided with the SIVAL dataset
4. Thus each image is a bag containing both positive and
negative instances (segments). Labels on the training data
specify whether the object of interest is present or not, but
the segments themselves are unlabeled (though the dataset
does provide ground truth segment labels for evaluation pur-
poses).

For Gibbs sampling, we generateS = 25 samples with
an initial burn-in period of 50 samples. This number was set
arbitrarily; later experiments increasing the sample sizeto
50 did not improve results significantly, though in general
larger samples should yield more accurate VOI estimates.
The risk parameter (rl) and the cost of labeling a single in-
stance are all set to 1, meaning we have no preference for
false positives or false negatives, and that we view a mis-
classification to be as harmful as requiring a user to label
one instance.

As the SIVAL dataset contains exactly one object per im-
age (see Figure 10), we do not expect the segmentation costs
to vary on a per example basis. Therefore, for this dataset
we attribute a single cost to all annotations of a particular
type. To determine how much more labeling a positive bag
costs relative to labeling an instance, we performed a user
study. Users were shown oversegmented images and had to
click on all the segments belonging to the object of interest.
The baseline task was to provide a present/absent flag on the
images. For segmentation, obtaining labels on all positive
segments took users on average four times as much time as
setting a flag. Thus we set the cost of labeling a positive bag
to 4 for the SIVAL data. The value agrees with the average
sparsity of the dataset: the SIVAL set contains about 10%
positive segments per image. The users who took part in the
experiment were untrained but still produced consistent re-
sults.

The initial training set is comprised of 10 positive and
10 negative images per class, selected at random. Our ac-
tive learning method must choose its queries from among
10 positive bags (complete segmentations), 300 unlabeled

4 http://www.cs.wustl.edu/∼sg/accio/SIVAL.html
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Fig. 12 Results on the SIVAL dataset. Sample learning curves per class, each averaged over five trials. Our method corresponds to the “Multi-level
active” curves. First six are best examples, last two are worst. For the same amount of annotation cost, our multi-level approach learnsmore quickly
than both traditional single-level active selection as well as both forms of random selection.
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Random Multi-level Gain over Random MIU Gain over
Active Random (%) Active Random (%)

10 +0.0051 +0.0241 372 +0.023 +0.050 117
20 +0.0130 +0.0360 176 +0.033 +0.070 112
50 +0.0274 +0.0495 81 +0.057 +0.087 52

Fig. 13 Left: Summary of the average improvement over all 25 SIVAL categories after half of the annotation cost is used.Right: Comparison
with Settles et al (2008) on the SIVAL data, as measured by the average improvement in the AUROC over the initial model for increasing labeling
cost values.

instances (individual segments), and about 150 unlabeled
bags (present/absent flag on the image). We use a quadratic
kernel,K(x, y) = (1 + αφ(x)T φ(y))2, with a coefficient
of α = 10−6, and average results over five random training
partitions.

Figure 12 shows representative (best and worst) learn-
ing curves for our method and the three baselines, all of
which use the same MIL classifier (NSK-SVM). Note that
the curves are plotted against the cumulativecost of obtain-
ing labels—as opposed to the number of queried instances—
since our algorithm may choose a sequence of queries with
non-uniform cost. All methods are given a fixed amount of
manual effort (40 cost units) and are allowed to make a se-
quence of choices until that cost is used up. Recall that a cost
of 40 could correspond, for example, to obtaining labels on
40
1 = 40 instances or404 = 10 positive bags, or some mix-

ture thereof. Figure 13 (left) summarizes the learning curves
for all categories, in terms of the average improvement at a
fixed point midway through the active learning phase.

All four methods steadily improve upon the initial clas-
sifier, but at different rates with respect to the cost. (All
methods fail to do better than chance on the ‘dirty glove’
class, which we attribute to the lack of distinctive textureor
color on that object.) In general, a steeper learning curve in-
dicates that a method is learning most effectively from the
supplied labels. Our multi-level approach shows the most
significant gains at a lower cost, meaning that it is best suited
for building accurate classifiers with minimal manual effort
on this dataset. As we would expect, single-level active se-
lections are better than random, but still fall short of our
multi-level approach. This is because single-level activese-
lection can only make a sequence of greedy choices while
our approach can jointly select bags of instances to query.
Interestingly, multi- and single-level random selectionsper-
form quite similarly on this dataset (see boxplots in Fig-
ure 13 (left)), which indicates that having more unambigu-
ous labels alone does not directly lead to better classifiers
unless the right instances are queried.
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At a cost of24 units the mean AUROC over all 25 classes
for active selection turned out to be0.723, which is92% of
the accuracy achievable if usingall the labels and examples
in the unlabeled pool. To reach the same accuracy random
selection requires44 units of cost. This means that to reach
92% of the upper-bound accuracy, active selection requires
45.5% less annotation cost than the passive learner.

The table in Figure 13 compares our results to those re-
ported in (Settles et al, 2008), in which the authors train an
initial classifier withmultiple-instance logistic regression,
and then use the MI Uncertainty (MIU) to actively choose
instances to label. To our knowledge this is the only other ex-
isting approach to perform active selections with MIL data,
making it a useful method to compare to. Following Settles
et al (2008), we report the average gains in the AUROC over
all categories at fixed points on the learning curve, averag-
ing results over 20 trials and with the same initial training
set of 20 positive and negative images. Since the accuracy
of the base classifiers used by the two methods varies, it is
difficult to directly compare the gains in the AUROC. The
NSK-SVM we use consistently outperforms the logistic re-
gression approach using only the initial training set; evenbe-
fore active learning our average accuracy is 68.84, compared
to 52.21 in (Settles et al, 2008). Therefore, to aid in compar-
ison, we also report the percentage gain relative to random
selection, for both classifiers. The results show that our ap-
proach yields much stronger relative improvements, again
illustrating the value of allowing active choices at multiple
levels (the method of Settles et al (2008) only allows active
queries for instance-level labels). For both methods, the per-
cent gains decrease with increasing cost; this makes sense,
since eventually (for enough manual effort) a passive learner
can begin to catch up to an active learner.

While these results illustrate the MIL scenario where im-
ages are bags of regions, our approach is applicable for any
scenarios where there are two label granularities. In a pre-
vious paper (Vijayanarasimhan and Grauman (2008a)), we
introduced another image-classification scenario for which
MIL is well-suited, where the keyword associated with a
category is used to download groups of images from multi-
ple search engines in multiple languages. Each downloaded
group is a bag, and the images within it are instances. For
each positive bag, at least one image actually contains the
object of interest, while many others may be irrelevant. The
goal is to predict the presence or absence of the category in
new images. See Vijayanarasimhan and Grauman (2008b)
for active selection results for this alternate MIL scenario.

4.2.2 Active selection from MIML data

In the previous section we considered active selection in
the binary setting when the image contains a single object
among background clutter. Next we use the MSRC dataset to
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Fig. 14 Learning curves when actively or randomly selecting multi-
level and single-level annotations.Top: Region-level accuracy for the
21-class MSRC v2 dataset plotted against ground truth cost.Bottom:
Region-level accuracy when 80 random images were added to theunla-
beled pool. Our multi-level active selection approach yieldsthe steep-
est learning curves while random selection lags behind, wasting anno-
tation effort on less informative examples. When 80 random imagesare
added to the unlabeled pool, random selection lags even further, since
there are more uninformative images that it can choose.

demonstrate the impact of using our multi-label active selec-
tion function in the more general multi-label setting, where
an image contains multiple objects of interest plus clutter,
and selections can be made from different types of annota-
tions.

We divide the examples into five folds containing an
equal number in each and use the first part for training and
the rest for testing. We construct the initial training set such
that each class appears in at least five images, and use image-
level labels. The rest of the training set forms the unlabeled
pool of data. The active learner can request either complete
segmentations or region-level labels from among the initial
training examples, or image-level labels from any unlabeled
example. We setrl = 50 for all classes, which means that
each misclassification is worth 50s of user time. The param-
eterrl should reflect the real cost of a classification mistake.
Our choice of the value ofrl is based on the fact that an error
made by the automatic labeling would take around 50s to
manually fix for the average image. For this experiment we
fix the costs per type using the mean times from real users:
50 s for complete segmentations, 10s for a region outline,
and 3s for a flag. We compare our approach to a “passive”
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aeroplane bicycle bird boat body

book building car cat chair

cow dog face flower grass

road sheep sign sky tree

water aeroplane bicycle bird boat

body book building car cat

chair cow dog face flower

grass road sheep sign sky

(a) Initial training set.

Learner: A building label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: building.

Learner: A sky label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: water.

Learner: A sky label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: sky.

Learner: A grass label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: grass.

Learner: A cow label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: cow. Learner: Segment this fully.

Learner: A grass label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: grass.

Learner: What class is this region?
Oracle: building

Learner: What class is this region?
Oracle: grass

Learner: What class is this region?
Oracle: tree

Learner: A water label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: water.

Learner: A building label would produce the 
largest reduction in risk.

Learner: Name an object.
Oracle: building.

(b) Annotations selected by the active learner in order (row major).

Fig. 15 Annotation queries selected by our method (right) on an examplerun starting from a small training set containing two examples perclass
(left). Right: Each image (from left to right) represents the example with the largest VOI as selected by our active learner on a sequence of
iterations. The active learning query (one among a region label, an image tag, or a complete segmentation) is displayed at the bottom of the image
along with the oracle’s answer. For a query on a region, the corresponding region is highlighted in the image; for an image tag,the text on the top
of the image represents what label is expected to produce the best reduction in risk.

selection strategy, which uses the same classifier but picks
labels to receive at random, as well as a single-level active
baseline (traditional active learning) that uses our VOI func-
tion, but only selects from unlabeled regions. All methods
are given a fixed cost and allowed to make a sequence of
label requests until the cost is used up.

Figure 14 shows the resulting learning curves for the
MSRC v2. Accuracy is measured as the average value of
the diagonal of the confusion matrix for region-level predic-
tions on the test set. All results are averaged over five ran-
dom trials. The proposed multi-level active selection yields
the steepest learning curves. Random selection lags behind,
wasting annotation effort on less informative examples. As
before, single-level active is preferable to random selection,
yet we get best results when our active learner can choose
between multiple types of annotations, including segmenta-
tions or image flags. The total gains after 1800 secs are sig-
nificant, given the complexity of the 21-way classification
problem with a test set containing 1129 image regions. Note
that the random selection curve is probably an over-estimate
of its quality; since we limit the unlabeled pool to only im-
ages from the MSRC, any example it requests is going to be
fairly informative. Figure 14 (bottom) shows results for the
same setting when 80 random images are added to the un-
labeled pool with the “negative” class label, indicating that

the more uninformative images that are present, the more
random selection will lag behind.

When active and random selection are run to comple-
tion on all labels, both methods reach an accuracy of59.5%
5; random selection requires 5776 units of manual effort to
reach the upper-bound while active selection requires only
3075 units. Thus with active selection we reach the upper
bound using46.7% less cost than the passive learner re-
quires.

4.2.3 Active selection examples

In this section we look at the types of annotation queries that
our approach requests based on some qualitative and quan-
titative results. Figure 15 shows annotation queries selected
by our approach during the first 12 iterations of an exam-
ple run starting from a small training set consisting of two
image tags per class. The initial training set is displayed in
Figure 15(a), and Figure 15(b) shows the first 12 queries
selected by our approach in row major order. The type of
query and the result from the oracle are displayed at the bot-
tom of the image. We also highlight the region being queried
in the case of a region label; text on the top of the image

5 Note that since we use a different train-test split for experiments
in this section, this upper-bound is not comparable to the accuracy re-
ported in Section 4.1
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Fig. 16 The cumulative number of labels acquired for each type with
increasing number of queries. Our method tends to request complete
segmentations or image labels early on, followed by queries on un-
labeled segments later on. This agrees with the intuition thatfewer
segmentations are worth their higher annotation costs as the classifier
becomes stronger.

shows which image tag our approach thinks would produce
the biggest reduction in the risk (thel with the largest value
in the summation in Equation 7).

The annotations requested by our approach are domi-
nated by image tags, which is reasonable considering they
are the least expensive labels among the three types. At the
same time, the images for which tags are requested appear to
consist of a small number of clearly defined objects (‘sky’,
‘water’ in the second and third images, ‘water’, ‘building’
in the first image, etc.). On more complex images, such as
the sixth image of the airplane, a complete segmentation
is requested. Also a region label on the ‘tree’ region is re-
quested on the tenth image, even though a tree image tag is
already available on the same image in the training set. This
illustrates that in some cases stronger annotations might be
required, even when the classifier already contains weaker
information about a class.

The examples selected by our approach are also diverse
in their appearance and class labels. For example, in the im-
ages selected by our approach that contain the region ‘sky’,
the appearance of the region is distinct from the examples
of ‘sky’ already available in the training set. This is also the
case for classes ‘building’ and ‘water’.

Figure 16 shows the cumulative number of labels ac-
quired for each type of annotation with increasing number
of queries on the SIVAL dataset for the case of binary clas-
sification. Our previous observation on the larger proportion
of image tags holds true in this dataset too. In addition, on
this dataset our approach appears to select complete segmen-
tations early on, followed by queries on unlabeled segments
later on. Intuitively, as the classifier becomes stronger itmay
be that fewer segmentations can provide adequate risk re-
ductions to mitigate their higher costs, and hence the less
expensive image tags become favorable.

4.2.4 Effect of initial training set size

A well-known concern when performing active selection is
that a faulty initial model might select uninformative exam-
ples to label and thus never converge to the most general
hypothesis. Thus, we next consider the robustness of our ap-
proach by varying the number of training labels used to train
the initial classifier. For the MSRC dataset we train the ini-
tial classifier with two, four, and eight image tags per class
(42, 84, and 125 image tags overall) and then perform active
selection with each model. In Figure 17, we compare our
multi-level active selection approach against a multi-level
random baseline and the best possible selection criterion.
The best possible selection is obtained by computing the ac-
tual VOI of an example using its ground truth label. This is
to compare how closely our expected VOI can approximate
the actual VOI. We average results over five random trials.

On all three initializations, particularly for the smaller
sets, our active selection approach has a larger slope than
random selection. In addition, our active selection follows
the trend of the best possible selection criterion. This illus-
trates the robustness of the approach to the initializationon
this particular dataset. Also, since our multi-class classifier
is an ensemble of a large number of binary classifiers, even
with two image tags per class the final classifier could have
enough examples to discriminate between the classes.

We show results for the same experiment for binary clas-
sification on the SIVAL dataset in Figure 18. The figure
shows some representative (best and worst) learning curves
comparing our selection function and a random baseline start-
ing with two, six and twenty examples equally distributed
across the positive and negative classes. The results are aver-
aged over six random trials. Note that the three curves start
at different points on the cost axes because they start with
a different number of training examples. However, accura-
cies at a particular cost on the different curves are not nec-
essarily comparable since the random initialization selects
an equal number of positive and negative examples, while
active and random selection approaches select from an un-
balanced pool of positive and negative examples due to the
one-vs-all binary setting.

The more variable results, as seen in the figure, could
point to a harder dataset or the extremely low number of ex-
amples used in the binary setting as compared to the multi-
class setting. The first row of learning curves show exam-
ples where a good initialization (larger number of examples)
helps the active selection criterion. On these examples it ap-
pears that with smaller number of examples the active selec-
tion criterion could be misled into regions of the hypothesis
space that do not necessarily correspond to the most general
solution for the given training set.

The first two curves in the second row are examples
where even with very few training examples the active selec-
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Fig. 17 Effect of the initial training set size on the active selection on the MSRC dataset. The classifier is initialized with two (left), four (middle),
and, eight (right) image tags per class, and active selection is compared with a random baseline and the best possible selection criterion based on
the actual VOI. On the MSRC dataset our active selection criterion is robust to the initialization and performs much better than random selection
on all three initial training sets.
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Fig. 18 Effect of the initial training set size on active selection on the SIVAL dataset. We initialize the classifier with two, six, and twenty image
tags equally distributed across positive and negative classes. The figure shows some representative (best and worst) learning curvesfor our active
selection approach and a random baseline. On this dataset a small training set composed of only two examples produces sub-optimal selections for
some classes.

tion criterion is able to match results with a larger initialset.
The final curve in the second row shows an example where
active selection performs worse than random on all three ini-
tializations. These results suggest that active learning could
be affected by the initialization on certain problems. How-
ever, note that we deliberately chose an extremely small ini-
tial training set (two, six examples) to illustrate this point.
Arguably, for most real applications one can reasonably ex-
pect to initialize the model with at least 10’s of labeled ex-
amples.

4.3 Annotation costs and Active Selection

In the following sections we evaluate how well we can learn
to predict the difficulty of segmenting images using image
features and the impact of using the predicted cost when
making an active selection.

4.3.1 Annotation cost prediction

First, we isolate how well we can learn to predict the dif-
ficulty of segmenting images based on image features. To
train our cost function, we gather data with Amazon’s Me-
chanical Turk. Users are required to completely segment
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User Number Accuracy
of images (%)

User 1 160 68.75
User 2 188 72.34
User 3 179 70.95
User 4 151 72.85
User 5 167 59.88
User 6 164 63.41
User 7 169 67.46
User 8 179 79.33

All users 210 73.81

Fig. 19 Accuracy of our cost function in predicting “easy” vs. “hard”,
both for user-specific and user-independent classifiers.
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Fig. 20 The easiest and hardest images to annotate based on actual
users’ timing data (top), and the predictions of our cost function on
novel images (bottom).

images from the 14-class MSRC v1 dataset while a script
records the time taken per image. We collected 25-50 anno-
tations per image from different users. Users could skip im-
ages they preferred not to segment; each user was allowed
to label up to 240 images. However, no user completed all
240 images. The fact that most users skipped certain im-
ages (Figure 19, column: Number of images) supports our
hypothesis that segmentation difficulty can be gauged by
glancing at the image content.

We train both classifiers that can predict “easy” vs. “hard”,
and regressors that can predict the actual time in seconds. To
divide the training set into easy and hard examples, we sim-
ply use a threshold at the mean time taken on all images.
Using the feature pool described in Section 3.2.1, we per-
form multiple-kernel learning to select feature types for both
the user-specific data and the combined datasets. The edge
density measure and color histograms received the largest

weights (0.61, 0.33 respectively), with the rest near zero.
Figure 19 shows the leave-one-out cross validation (loo-cv)
result when classifying images as easy or hard, for the users
for whom we had the most data. For the majority, accuracy
is well above chance. Most of the errors may largely be due
to our arbitrary division between what is easy or hard based
on the mean.

To train a regressor we use the raw timing data and the
same set of features. Figure 20 shows examples that were
easiest and hardest to segment, as measured by the ground
truth actual time taken for at least eight users. Alongside,we
show the examples that our regressor predicts to be easiest
and hardest (from a separate partition of the data). These ex-
amples are intuitive, as one can imagine needing a lot more
clicks to draw polygons on the many objects in the “hardest”
set. Figure 21 (left) plots the actual time taken by users on
an image against the value predicted by our cost function,
as obtained with loo-cv for all 240 images in the MSRC v1
dataset. The rms difference between the actual and predicted
times is 11.1s, with an average prediction error of 22%. In
comparison, predicting a constant value of 50s (the mean of
the data) yields an average prediction error of 46%. Given
that the actual times vary from 8 to 100s, and that the aver-
age cross-annotator disagreement was 18s, an average error
of 11 s seems quite good.

In order to verify that we were not simply learning a
category-based level of effort, we looked at the actual and
predicted times split across different classes. Figure 21 (right)
shows a plot of the actual and predicted times broken across
the different scene settings in the MSRC dataset. The x-axis
shows the most dominant foreground class label in that par-
ticular scene layout. This figure shows that every class/scene
layout contains images with varying difficulty in terms of the
annotation effort required by users. While some categories
have more variation than others (cow vs car) there is no di-
rect connection between the image class and the time taken
to provide annotations. The plot also shows that for most
of the examples our cost predictor provides fairly accurate
predictions of the annotation costs.

4.3.2 Active selection with a learned cost function

Thus far we have fixed the costs assigned per annotation
type; now we show the impact of using the predicted cost
while making active choices. We train a binary multi-instance
classifier for each MSRC category using image labels on4

5 -
th of the data per class, in five different runs. The rest is used
for testing. We compare two MIL active learners: one using
cost prediction, and one assigning a flat cost to annotations.
At test time, both learners are “charged” the ground truth
cost of getting the requested annotation.

Figure 22 shows representative (good and bad) learning
curves, with accuracy measured by the AUROC value. For
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Fig. 21 Left: Scatter-plot of the actual time taken by users to segment an image vs. the value predicted by our cost function, for the 240 images
in the MSRC v1. The predicted and actual times are highly correlated, implying that our cost predictor has learned how difficult an image is to
segment using only low-level image features.Right: The actual and predicted times split across the different categories of images in the MSRC
dataset. The plot shows that most classes have images with varying difficulties, and assures that the difficulty measure we have learnedis not
class-specific.
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Fig. 22 Representative learning curves when using active selection with the learned cost predictor, as compared to a baseline that makes active
selections using a flat cost value. For classes like Tree, Cow, and Airplane (shown here), the cost prediction produces more improvement per unit
cost, while for a few like Sky there is no significant difference—most likely because the images within the class are fairly consistent and equally
informative and easy to label.

% acc imp. Cost(secs) % Cost
CP NC saved

5 11.40 11.52 +1.07
10 24.52 31.41 +21.94
15 45.25 63.24 +28.45
20 165.85 251.10 +33.95
25 365.73 543.69 +32.73

Table 2 Savings in cost when using cost prediction within the active
learner.CP refers to using cost prediction andNC is without cost.
Overall, our active selection takes less effort to attain the same level
of accuracy as a cost-blind active learner.

Tree, Cow, and Airplane, using the predicted cost leads to
better accuracies at a lower cost, whereas for Sky there is lit-
tle difference. This may be because most ‘sky’ regions look
similar and take similar amounts of time to annotate.

Table 2 shows the cost required to improve the base clas-
sifier to different levels of accuracy. The fourth column shows
the relative time savings our cost prediction enables over a
cost-blind active learner that uses the same selection strat-
egy. For larger improvements, predicting the cost leads to
noticeably greater savings in manual effort—over 30% sav-
ings to attain a 25% accuracy improvement.

5 Conclusions

Our approach addresses a new problem: how to actively choose
not only which instance to label, but also what type of image
annotation to acquire in a cost-effective way. Our method is
general enough to accept other types of annotations or clas-
sifiers, as long as the cost and risk functions can be appropri-
ately defined. We have shown that compared to traditional
active learning which restricts supervision to yes/no ques-
tions, a richer means of providing supervision and a method
to effectively select supervision based on both information
gain and cost to the supervisor is better-suited for building
classifiers with minimal human intervention.

There are several directions of future work for our re-
search. The foremost is to reduce the computational com-
plexity of the active selection criterion. With our implemen-
tation of the incremental SVM technique of Cauwenberghs
and Poggio (2000) it takes on average 0.5 secs to evaluate a
single region and 20 secs to evaluate a bag (image) on a 1.6
GHz PC. This corresponds to about 15 minutes to choose
which annotation to request when the dataset contains∼ 100
bags (images) for∼20 classes. Once an annotation is se-
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lected it takes less than 0.1 secs to retrain the classifier. The
most expensive step in selecting an annotation is the Gibbs
sampling procedure coupled with the need to update a large
number of classifiers in the one-vs-one setting. We are cur-
rently considering ways to alleviate the computational cost.
However, even without real-time performance, a distributed
framework for image labeling that involves multiple annota-
tors could be run efficiently.

Currently, we are exploring the problem of cost-sensitive
batch selection, where the goal is to actively choose a set of
examples for labeling at once, while ensuring that the total
annotation request costs less than a given budget (Vijaya-
narasimhan et al, 2010).

Additionally, if we wanted to use our method with the in-
tention of targeting specific annotators who have variable ca-
pabilities and speeds depending on image content, we could
build user-specific cost functions, i.e., a separate SVM for
each. Then, we could extend the VOI to choose not only
what annotation type and image looks most promising, but
also which user ought to be responsible for annotating it.

Allowing further levels of supervision, such as scene
layout, contextual cues or part labels, would enable us to im-
prove the way in which human supervisors can interact with
computer vision systems. Generative models could be more
suited to integrate such disparate cues. Extending the ap-
proach to generative models is another direction of research
we are planning to pursue.

Finally, while we have concentrated mostly in the do-
main of object recognition, the problem of comparing dif-
ferent types annotations in a unified framework is potentially
applicable to several other domains both in vision and ma-
chine learning such as video annotation, tracking, or docu-
ment classification.
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