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Abstract We present an active learning framework that pre-cases be crucial to proper perception of objects. Nonethe-
dicts the tradeoff between the effort and information gain a less, recent advances have shown the feasibility of legrnin
sociated with a candidate image annotation, thereby rgnkinaccurate models for a number of well-defined object cate-
unlabeled and partially labeled images according to their e gories.

pected “net worth” to an object recognition system. We de- Most visual recognition methods rely on labeled train-
velop amulti-label multiple-instance approach that accom- ing examples where each class to be learned occurs promi-
modates realistic images containing multiple objects &nd anently in the foreground, possibly with uncorrelated @utt
lows the category-learner to strategically choose whabann surrounding it. In practice, the accuracy of a recognitibn a
tations it receives from a mixture of strong and weak labelsgorithm is often strongly linked to the quantity and quality
Since the annotation cost can vary depending on an image the annotated training data available—having access to
complexity, we show how to improve the active selection bymore examples per class means a category’s variability can
directly predicting the time required to segment an unkedbel more easily be captured, and having richer annotations per
image. Our approach accounts for the fact that the optimamage (e.g., a segmentation of object boundaries rather tha
use of manual effort may call for a combination of labelsa yes/no flag on object presence) means the learning stage
at multiple levels of granularity, as well as accurate predi need not infer which features are relevant to which object.
tion of manual effort. As a result, it is possible to learn mor Unfortunately, this is a restrictive constraint, as substa
accurate category models with a lower total expenditure ofial manual effort is needed to gather such datasets. Yet, no
annotation effort. Given a small initial pool of labeledaat all images are equally informative, suggesting that a wiser
the proposed method actively improves the category modetnd more targeted use of human attention could make the
with minimal manual intervention. visual category learning process more effective.

Active learning strategies provide a way to reduce the re-
liance on labeled training data by minimizing the number of
labeled examples required to learn classifiers. They tilpica
do this by allowing the classifier to choose which example
needs to be labeled next from a large pool of unlabeled ex-
amples, reducing supervision without sacrificing much ac-
curacy in the model. The assumption is that while unlabeled
ﬁ-xamples can be collected with little or no effort, proviglin
annotations on the examples entails non-trivial efforctsu
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1 Introduction

One of the primary challenges in computer vision researc

is the problem of recognizing generic object categorids. It

challenging on a number of levels: objects of the same cla§§'ethOdS are therefore appealing for quect recognition be-
may exhibit an incredible variability in appearance, reql-CAUSE of the abundance of unlabeled images (available, for

world images naturally contain large amounts of irreIevaanample’ on the Web) and the substantial effort required to

background “clutter”, and subtle context cues can in man)PrOV'de detaﬂgd annotations. . .
However, in the general case, visual category learning

Department of Computer Science does not fit the mold of traditional active learning apprassh
University of Texas at Austin which primarily aim to reduce the number of labeled exam-
E-mail: {svnaras,graumg@cs.utexas.edu ples required to learn a classifier, and almost always assume




Coarser labels,
less expensive

(a) Most real-world images contain multiple objects and can
therefore be associated with multiple labels.

Finer labels,
more expensive

(b) Useful image annotations can occur at multiple levels afigra

i e ularity. For example, a learner may only know whether the im-
Low effort High effort age contains a particular object or not (top row, dotted balex
note object is present), or it may also have segmented foregrounds
(middle row), or it may have detailed outlines of object palotst{
tom row).

(c) The actual manual effort required to label varies accwy do
annotation type and image example.

Fig. 1 Three important problems that need to be addressed while choosommative image data to label for recognition, none of which
considered by traditional active learning approaches.

a binary decision task. When trying to choose informativepredicting the tradeoff between the effort and information

image data to label for recognition, there are three importa gain associated with any candidate image annotation. This

distinctions we ought to take into account. means an active learner must be able to choose from anno-
First, while many of today’s manually collected datasetdations at multiple levels of granularity and specify nolyon

assume that the class to be learned occurs prominently imhich example but also whagpe of annotation is currently

the foreground and therefore can be associated with a singfeost helpful.

label, most naturally occurring images consist of multiple  Thjrd, while previous methods implicitly assume that all
objects. Therefore, an image can be associatedmithi-  annotations cost the same amount of effort (and thus mini-
ple labels simultaneously as shown in Figure 1(&)This  mize the total number of queries), the actual manual effort
means that an active learner must assess the value of an iFéquired to label images varies both according to the anno-
age containing some unknown combination of categories. tation type as well as the particular image example. For ex-
Second, whereas in conventional learning tasks the armple, completely segmenting an image and labeling all ob-
notation process consists of simply assigning a class labglcts requires more time and effort than providing an image-
to an example, image annotation can be done at differenéye| tag specifying object presence. Even for the same type
levels—by assigning class labels, drawing a segmentatiogf annotation, some images are faster to annotate tharsother

of object boundaries, or naming some region (Figure 1(b))e.g., a complicated scene versus an image with few objects,
Richer annotations such as segmentations provide more igs seen in Figure 1(c)).

formation from which to infer class membership, but require
more effort on the part of the person providing supervision
While recent work has begun to explore ways to reduce th
level of supervision (Weber et al (2000); Sivic et al (2005);

Quelhas et al (2005); Bart and Ullman (2005); Fergus et Ahe multiple levels of granularity that may occur in prowdde
(2005); Li et al (2007); von Ahn and Dabbish (2004); Rus-. : ) .
image annotations, we pose the problem in the multiple-

S?" et al_(2005); Verbeek a_nd Triggs (2007_))' such teChT?stance learning setting (MIL). We show how to extend the
niques fail to address a key issue: to use a fixed amount Q

) . standard binary MIL setting to the multi-label case by de-
manual effort most effectively may call for a combination

. . - . vising a kernel-based classifier foultiple-instance, multi-
of annotation at different supervision levels. Therefamne, . . .
Iﬁbel learning (MIML). We formulate an active learning func-

stead of ignoring annotations such as segmentations Whi%on in the MIML domain that allows the system itself to

require more effort to obtain, we need a principled way Ofchoose which annotations to receive, based on the expected

1 Multi-label is thus more general thanulti-class, where usually benefit to its current object models. After learning from a
each example is assumed to represent an item from a single class. small initial set of labeled images, our method surveys any

In order to handle these issues, we propose an active
learning framework where the expected informativeness of
Sny candidate image annotation is weighed against the pre-
(flicted cost of obtaining it (see Figure 2). To accommodate
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Most regions are understood, This looks expensive to
but this region is unclear. annotate, and it does not seem Label the object(s)

informative. in this region
> _—————— — ——

Flower, Flower Contains flower

8

This looks easy to annotate,

annotate, but it seems very but its content is already j Completely segment
Dog Contains book infe ative. . understood. i and label this image.
(a) Labeled (and partially la- &rors Unlabeled and partlany Tabe[jed examples to survey(c) Actively chosen queries sent to
beled) examples to build mod- annotators
els

Fig. 2 Overview of the proposed approach. (a) We learn object catesgfsom multi-label images, with a mixture of weak and stronglab(b)
The active selection function surveys unlabeled and partiaieled images, and for each candidate annotation, pretetsadeoff between its
informativeness versus the manual effort it would cost to ob{ajriThe most promising annotations are requested and used to upeaigrrent
classifier.

available unlabeled data to choose the most promising anntewing weak supervision (Weber et al (2000)), to those that
tation to receive next. After re-training, the process eépe mine unlabeled images (Sivic et al (2005); Lee and Grau-
continually improving the models with minimal manual in- man (2008)). Other techniques reduce training set sizes by
tervention. transferring prior knowledge (Fei-Fei et al (2003)), or ex-

Critically, our active learner chooses both which imageploiting noisy images from the Web (Fergus et al (2005);
example as well as whdype of annotation to request: a Vijayanarasimhan and Grauman (2008a)). Aside from such
complete image segmentation, a segmentation of a singlearning-based strategies, another approach is to ergmura
object, or an image-level category label naming one of theisers to annotate images for free/fun/money (von Ahn and
objects within it. Furthermore, since any request can requi Dabbish (2004); Russell et al (2005); Sorokin and Forsyth
a different amount of manual effort to fulfill, we explicitly (2008.)).

balance the value of a new annotation against the time it . . . . .
. L Active learning for visual categories has thus far received
might take to receive it. Even for the same type of annota-

. . relatively little attention. Active strategies typicaltyy t
tion, some images are faster to annotate than others. Humanesa cly litie attentio ctive strategies typicaltyy to

. i . . __minimize model entropy or risk, and have been shown to ex-
(especially vision researchers) can easily glance at agema

cer . . _pedite learning for binary object recognition tasks (Kapoo
and roughly gauge the difficulty. Can we predict annotatlorgt al (2007a)), relevance feedback in video (Yan et al (2003)

costs directly from image features? Learning with data COIHataset creation (Collins et al (2008)), and when there are
lected from anonymous users on the Web, we show that ac- . . .
. . ; : correlations between image-level labels (Qi et al (2008)).
tive selection gains actually improve when we account for
the task’s variable difficulty. The multiple-instance learning (MIL) scenario has been
Our main contributions are a unified framework for pre-explored for various image segmentation and classification
dicting both the information content and the cost of différe tasks (Maron and Ratan (1998); Vijayanarasimhan and Grau-
types of image annotations, and an active learning strategyan (2008a); Zhou and Zhang (2006)). Multi-label variants
designed for the MIML learning setting. Our results demon-of MIL in particular are proposed in Zha et al (2008), with
strate that (1) the active learner obtains accurate modgis w impressive results. Active selection in the two-class MIL
much less manual effort than typical passive learners, €2) wsetting was recently explored in Settles et al (2008), where
can fairly reliably estimate how much a putative annotatiorthe classifier is initially trained on examples with bagdev
will cost given the image content alone, and (3) our multi-labels and active selection is performed to obtain instance
label, multi-level strategy outperforms conventionaliaet level labels on some examples. However, previous active
methods that are restricted to requesting a single type-of afearning methods are limited to learning from single-label
notation. examples and making binary decisions. In contrast, our ap-
proach makes it possible to actively learn multiple clasges
once from images with multiple labeland labels at mul-
2 Related Work tiple levels of granularity. The multi-label distinctios im-
portant in practice, since in a naturally occurring pool of u
A number of research threads aim at reducing the expense labeled data the images will not be restricted to containing

obtaining well-annotated image datasets, from methods abnly one prominent object. Similarly, the multi-level idisa



important since it will allow us to balance a mixture of an-taining the category of interest (or not), some have both a
notation types. class label and object outlines, while others have no anno-
In addition, most active learning approaches assume th#ations at all. We derive an active learning criterion fumrct
each training example requires the same amount of marnhat predicts how informative further annotation on any par
ual effort resources to label. In reality, the effort invedv  ticular unlabeled image or region would be, while account-
in providing supervision could vary significantly depend-ing for the variable expense associated with different anno
ing on a number of factors. A theme is emerging in thetation types. Specifically, we show how to continually asses
learning community to quantify manual effort for different the value of three different types of annotations: a label on
learning tasks. In Kapoor et al (2007b) and Baldridge andgn image region, an image-level tag, and a complete seg-
Osborne (2008), the length of a voice mail or sentence imentation of the entire image (see Figure 8). We also refer

used to identify examples that could take more or less marte these types as “levels”, since they correspond to diftere
ual effort to annotate. Budgeted learning for active classilevels of detail in the annotation. As long as the informmatio
fiers, which work on constrained budgets while querying atexpected from further annotations outweighs the cost of ob-
tributes on a test example, is explored in the work of Greinetaining them, our algorithm will request the next valuable
et al (2002) for medical diagnosis. In Haertel et al (2008)label, re-train the classifier, and repeat.

regressors are learned based on sentence length, number of In the following, we introduce the MIL and MIML frame-
characters, etc. to predict annotation time for documestcl works and define a discriminative kernel-based classifar th
sification. While the length of a voice mail or the cost of acan deal with annotations at multiple levels (Section 3.1).
medical diagnosis directly provides a measure of the cost ofhen, we develop a novel method to predict the cost of an
an example, no such direct measure exists to quantify the e&nnotation (Section 3.2.1). Finally, we derive a decision-
fort involved in providing an image annotation. Thus far, notheoretic function to select informative annotations iis th
existing approaches in object recognition attempt to dfyant multi-label setting, leveraging the estimated costs (r&.2.2).
or predict the amount of effort required to provide annota-

tions on image examples.

_ Overall, in contrast to this work, pr.evious .active learn- 1 Mutti-label multiple-instance learning

ing methods for recognition only consider which examples

to Obtéin a class label for to.redupe uncertainty (.Ya'n et ahn arbitrary unlabeled image is likely to contain multiple
(2003); Kapoor et al (2007a); Collins et al (2008); Qi et al 0015 At the same time, typically the easiest annotation

(2008)), and generally are limited to binary and/or Single'obtain is a list of objects present within an image. Both as-

label problemg. None can Iearn_from b(_)th multi-label Image'pects can be accommodated in the multiple-instance multi-
level and region-level annotations. Finally,

( _ to our Knowl-3p | jearning setting, where one can provide labels at mul-
edge, no previous work has considered predicting the Coﬁtple levels of granularity (e.g., image-level or regiavél),

of an ur?seen gnnlotatpn, nr(])r_allowmg such predictions Qg the classifier learns to discriminate between multiple
strengthen active learning choices. classes even when they occur within the same example.

.This {)fa}per expandf] on Ol:jr previous czonfer:nzce pu?l,i' In the following, we extend SVM-based multiple-instance
cations (Vijayanarasimhan and Grauman (2008b, 2009)); Inaarning (MIL) to the multi-label case. The main motivation

thfhrggnuscrlpdt Welgrolvlde a s;)r;gle franeworI'< dto d;;:iw'thof our design is to satisfy both the multi-label scenario as
° | marc)j/ and muiti-¢ a;]ss prbo ems. feprow ca r'] On:vi/ell as the needs of our active selection function. Specifi-
results to demonsitrate the robustness of our approach-an &ally, we need classifiers that can rapidly be incrementally

lustrations to better understand the main ideas. updated, and which produce probabilistic outputs to esti-
mate how likely each label assignment is given the input.
3 Approach In the MIL setting, as first defined by Dietterich et al
(1997), the learner is givesets (bags) of instances and told
The goal of this work is to learn category models with min-that at least one example from a positive bag is positive,
imum supervision under the real-world setting where eachvhile none of the members in a negative bag is positive. MIL
potential training image can be associated with multipssésis well-suited for the image classification scenario where
Throughout, our assumption is that human effort is mordraining images are labeled as to whether they contain the
scarce and expensive than machine cycles; thus our methedtegory of interest, but they also contain background clut
prefers to invest in computing the best queries to makeerathter. Every image is represented by a bag of regions, each of
than bother human annotators for an abundance of less usghich is characterized by its color, texture, shape, etar(vi
ful labelings. and Ratan (1998); Yang and Lozano-Perez (2000)). For pos-
We consider image collections consisting of a variety ofitive bags, at least one of the regions contains the object
supervisory information: some images are labeled as coref interest. The goal is to predict when new image regions



(a) unlabeled (b) bag-level labels

bels than instancesy; < n;), since multiple instances may
have the same label. Every instanrfj'e is associated with

a descriptionqﬁ(%) in some kernel embedding space and
some class labél ¢ L = {1,...,C}, but with only the
bag-level labels it is ambiguous which instance(s) belongs
to which label. A bagX; has label if and only if it contains

at least one instance with laldeNote that a labeled instance

is a special case of a bag, where the bag contains only one

example ©; = 1), and there is no label ambiguity.

Contains cow, water, grass

(c) partial instance-level label|(d) fully labeled & segmented

For our purposes, an image is a bag, and its instances
are the oversegmented regions within it found automayicall
with a segmentation algorithm (see Figure 3). A bag’s la-
bels are tags naming the categories present within the im-
age; a region (instance) label names the object in the par-

) o ] ___ticular region. Each region has a feature vector describing
Fig. 3 In our MIML scenario, images are multi-label bags of regions it This foll th f MIL f
(instances). Unlabeled images are oversegmented into regjof®(a !S appearance. IS Tollows the common use o - or
an image withbag-level labels, we know which categories are presentimages (Maron and Ratan (1998); Zha et al (2008); Vijaya-
in it, but we do not know in which regions (b). For animage witmso  narasimhan and Grauman (2008b)), but in the generalized

instance-level labels, we have labels on some of the segments (c). Fofnultiple-instance multi-label case.
afully annotated image, we have true object boundaries and labels (d).

Contains cow, water, grass

Our MIML solution has two components: first, we de-
compose the multi-class problem into a humber of binary
problems, in the spirit of standard one-vs-one classiboati
second, we devise Multi-label Set Kernel that performs a
weighting in kernel space to emphasize different instances
within a bag depending on the category under consideration.

S Each one-vs-one binary problem is handled by an SVM
Tree Building vs Tree Tree Building vs Tree  {rained to separate bags containing lalydétom those con-
Fig. 4 The intuition behind our multi-label kernel functioheft: In tainingl;, for all i, j. For the single-label case, one can aver-
MIML, if an image’s representation is independent of its latel 546 5 hag's features to make a single feature vector summa-
different labels could map to the same point in feature spRight: e s 1 n; ;
Our Multi-label Set Kernel weighs instances based on the phexli rizing all its instancesp(X;) = X ijl gb(x}), and then
class membership, thereby associating specific regions withimthe i train an SVM with instances and bags; this is the Normal-
age to the provided labels. In the top image the region comgiai  ized Set Kernel (NSK) approach of Gartner et al (2002). The
building (lighter shading) contributes more to the overall gmaep-  NSK s a kernel for sets, and is derived from the definition
resentation given the label “building”, while in the bottomage the . . . .
region containing a tree contributes more for the label “tree of convolution kernels using the set-membership function.
In order to correct for the cardinality of the sets, a normal-
ization factor based on the 1 or 2-norm is introduced. For the
contain the object—that is, to learn to label regions as foreMIL setting, every instance in a bag can be seen as a member
ground or background. Since a positive instance is a posPf the bag, and the NSK corresponds to an averaging process
tive bag containing a single instance, MIL can accommo<carried out in feature space. Bunescu and Mooney (2007)
date both region labels (instance-level) and image taggs (bashow that the NSK approach can be construed as a balanc-
level). ing constraint on the positive bags. Intuitively, this mean
In the more general multiple-instance multi-label (MIML)thaton average we expect the label on a positive bag to be
setting, each instance within a bag can be associated wifif€ater than zero.
one ofC possible class labels; therefore each bag is associ- However, in the multi-label case, some bags could be as-
ated with multiple labels—whichever labels at least one okociated wittboth labels; andl;. Simply treating the image
its instances has. as a positive example when training both classes would be
Formally, let{(X;, L), (X2, L2),...,(Xn,Ly)} de-  contradictory (see Figure 4 (left)). Intuitively, whenitrizag
note a set of training bags and their associated labels. Eaehclassifier for clasg, we want a bag to be represented by
bag consists of a set of instanc&s = {«i,z%,...,z} },  itscomponentinstances that are most likely to have thé labe
and a set of label§; = {I%,14,...,1,, }, wheren; denotes  [;, and to ignore the features of its remaining instances. Of
the number of instances iK;, andm,; denotes the number course, with bag-level labels only, the assignment of &bel
of labels inL;. Note that often a bag has fewer unique la-to instances is unknown.



600 : : ‘ ‘ 300 i
500t A ] 250t N
G 400 - ) s S 2000 <§ ° Lj .
= SY =
= 300¢ c
2 8 S
g 200r X g
3 : g
o 100- & s Y
= Segmentations X .
0 A Image tags || i 6 Image tags
"% . = Region labels = Region labels
-100 : : ; ; 50 : : ; ;
0 20 40 60 80 100 0 20 40 60 80 100
Time to annotate (secs) Time to annotate (secs)

Fig. 5 This figure shows the reduction in risk for each example in thaheied pool plotted against the time required to provide aotation
after training with 5 image tagseft) and 100 image tagsight). There is not an absolute correlation between the cost of motation and how
informative it is, motivating the use of cost-sensitive activerigay.

We therefore propose a Multi-label Set Kernel that weightesteriors from the current classifiers. Note that becéhese t
the feature vectors of each instance within the bag accordeernel is parameterized by the label under consideration, a
ing to the estimated probability that the instance belongs tmulti-label bag can contribute multiple differefiéature,label
the class. That way if an instance has a high chance of bgairs to the training sets of a number of the one-vs-one clas-
longing to the given class, then its feature vector will domi sifiers.
nate the representation (Figure 4 (right)). To this end, e« d
sign a class-specific feature representation of bagsXlLet
{z1,...,z,} be a bag containing labels = I4,... 1,
(where here we drop the example indefor brevity). We
define the class-specific feature vectotofor classi; as

Our Multi-label Set Kernel can be seen as a generaliza-
tion of the NSK (Gartner et al, 2002), which is restricted
to single-label binary classification. It is also relatedhe
kernel in (Kwok and Cheung, 2007), where weights are set

(1) n using a Diverse Density function. In contrast, we estimate
¢ (X ’ ) - ZPr(lk\xj)QS(xj), (1) the class conditional probabilities using the classifian-co
=1 structed with the currently available training data.

which weights the component instances by their probabil-
ity of being associated with the class label under consider-

The proposed kernel is valid for both instances and bags,
ation. HerePr(l;|z;) denotes thdrue probability that in- prop 9

bel hich i and thus can be used to build SVMs for all required compo-
sta}n)celxj € ings lto categrc]) i V}’ Ich we spproxmgte nent binary problems. Each SVM can accept novel instances
asPr(lx|z;) ~ pllle;), wherep(iy|z;) is the posterior bags: the feature for an input instance is unchangedewhil

probatrJ]iIityfoutlgut by. thle (?Iassifier using t'heltrailnine? glataan input bag is weighted according to Eqn (1). Given a new
seen thus far. For a single instance (or equivalently, desing NPUE X .0, We (2) run it through alkC x (C — 1) clas-

instance bag), there is no label ambiguity, so the instagice Lifiers, (b) compute théC x (C — 1) resulting two-class

simply represented by its feature vector. posteriors using the method of Platt (1999), and, finally, (c

qu generic kemnels, we m"’_ly_ not know the feature Spac?nap those posteriors to the multi-class posterior probabil
mapping¢(x) needed to explicitly compute Eqn (1). In- tiesp(l| X e ) for each label € {1,...,C}. For this last

stead, we can gpply the same feature weights \{iathe k.ern ep we use the pairwise coupling approach of Wu et al
value computation. Lek; and X be bags associated with (2004), where the pairwise class probabilities are used to

labelst, andiz, res'pectlvely, that are currently being used ©solve a linear system of equations to obtain the multi-class
construct a classifier separating clasgeandl,. Then the

e probabilities.
kernel value between bagd§, , X is given by
ny N2 . . . . .
K X(l1)7X(l2) _ l|2d) plia|2?) K(zl, 22), While in this paper we have combined one-vs-one binary
AT ;;p( 1) pllal;) Kz, 23) problems to obtain a multi-class classifier, our method ts no

restricted to this setting. Since our approach defines a&kern

whereC(xz, 23) = ¢(x})"¢(z?) is the kernel value com- for the multi-label problem, it can be used with other kernel

puted for instances; and?, andp(:|x}), p(lz|+3) are the  based multi-class approaches, including one-vs-all SVMs.



3.2 Active multi-level selection of multi-label annotati®

Thus far we have defined the multi-label learner, the basic
classifier with which we want to actively learn. Next we de-
scribe our strategy to do active selection among candidate
annotations. For each candidate, the selection functia me
sures its expected informativeness and subtracts itsqteedi
cost; the most cost-effective queries are those where-infor
mativeness outweighs effort. We first address how to pre-

dict cost (Section 3.2.1), followed by informativenessqSe -

tion 3.2.2). Fig. 6 Which image would you rather annotate? Humans can easily
glance at an image and roughly gauge the difficulty. This apgpede
true even without prior knowledge about the specific objectsgnt in
3.2.1 Predicting the cost of an annotation the image (second row).

There are three possible types of annotation request: the
classifier can ask for a label on a bag, a label on an instang@n effectively mitigate the cost for several examplesdin a
within a bag, or a label on all instances within a bag. A labeMdition, the relative risk reduction versus the annotatioret
on a bag serves as a “flag” for class membership, which iggquired is a function that continually changes as more-anno
ambiguous because we do not know which of the instancei@ted data is acquired, as evident when we compare the total
in the bag are associated with the label. A label on an inshape of the scatter plots on the left (where only 5 examples
stance unambiguously names the class in a single image rléave been seen per class) and on the right (where 100 exam-
gion, while labeling all instances within a bag correspondgles have been seen per class). Hence, to best reduce human
to fully segmenting and labeling an image. Figure 8 illus-involvement, the active learner needs a quantitative nmreasu
trates each of these three types. of the effort required to obtain any given annotation.
Traditional active learning methods assume equal man- The goal is to accurately predict annotation time based
ual effort per label, and thus try to minimize the total numbe on image content alone—that is, without actually obtaining
of queries made to the annotator. In reality annotationscosthe annotation, we need to estimate how long it will take
will vary substantially from image to image, and from type a typical annotator to complete it. As Figure 6 suggests, hu-
to type. Thus, the standard “flat cost” implied by traditibna mans are able to predict the difficulty of annotating an image
active learners is inadequate. even without prior knowledge about the objects occurring in
To illustrate this idea more concretely, we ran an experthe image (second row) or other high-level cues. Therefore,
iment where we measured both the reduction in misclassifit seems plausible that the difficulty level of an image could
cation risk produced by adding an annotation with its carrecbe predicted based on the image’s low-level features. For an
label from an unlabeled pool of images and the time to obextreme example, if an image contains a single color it most
tain the annotation. The misclassification risk is defined ifikely contains only one object, and so it should not be dif-
the standard way, as the probability of classifying each exficult to segment. If the image has significant responses to a
ample with an incorrect label, summed over all exampleslarge number of filters, then it may be highly cluttered, and
Figure 5 shows this result for all examples in the unlabeledo it could take a long time.
pool with three annotation types (segmentations, image tag  Thus, we propose to use supervised learning to estimate
and region labels) for two different sizes of the initialitra  the difficulty of segmenting an image. It is unclear what fea-
ing set (5 and 100 image tags respectively). tures will optimally reflect annotation difficulty, and admi
The figures suggest that neither more expensive nor lesedly high-level recognition itself plays some role. Weest|
expensive examples are regularly more useful than the.otherandidate low-level features, and then use multiple kernel
Similarly, the annotation that provides the best reduciion learning to select those most useful for the task. Multiple
risk might not be the most effective in terms of the cost ofkernel learning approaches automatically select the weigh
obtaining it. For example, in Figure 5 (right) there are examon the various features (kernels) by posing the problem as
ples from all three annotation types with reductions in riskan optimization of the coefficients of such a combination.
above 200 units. While a standard “flat cost” active learnet.anckriet et al (2004) show that this reduces to a convex
would choose the more expensive segmentation (becausetimization problem known as a quadratically-constrdine
of the marginally higher reduction in risk) a cost-sensitiv quadratic program (QCQP). Bach et al (2004) propose a
learner might choose the less expensive one. novel dual formulation of the corresponding QCQP as a second
The figures also illustrate that while segmentations arerder cone programming problem to yield a formulation for
indeed more expensive to obtain, the larger reductionskn ri which the sequential minimal optimization (SMO) algorithm



Interface on parable, we normalize each user’s times by his/her mean and
Mechanical Turk  yse the average time taken on an image to be its target label.

We construct ay?> RBF kernel over the training exam-
ples per image feature. Based on the timing obtained from
the anonymous users we divide the set of training images
into a discrete range of “easy” and “hard” images using the
mean time over all the images. We then use the MKL ap-
32s. proach of Bach et al (2004) to learn the weights on the im-
24 s, age features for the binary classification problem of classi
48s, fying images into “easy” and “hard” categories. Using the
obtained combined kernel, we also learn a cost predictor
Fig. 7 Our interface on Mechanical Turk to collect annotation timesfunction using Support Vector Regression (SVR).

for segmenting images from anonymous users. The syst_em times t_he From this we can build a cost functicﬂ(z) that takes

responses as users use a polygon-drawing tool to superimpose object . . . .

boundaries, and name and outline every major object. a candidate annotatianas input, and returns the predicted
time requirement (in seconds) as output. Wheésa candi-

date full segmentation, we apply the learned function to the

can be applied. We use this SMO algorithm to select costmage. Wher is a request for a tag (bag-level label), we set

predictive features, since it allows efficient solutionslfoge- C(2) as the cost estimated using similar time-based experi-
scale problems. ments. Finally, whem entails outlining a single object, we

We begin with some generic features that may be decer%stmate the cost as the full image’s predicted time, divide

indicators of image complexity: a histogram of oriented-gra by the number of segments in the image.

dients, a gray-scale histogram, and two new features based

on the edge density and color uniformity. The features are o . . )
designed to exploit the fact that more objects could lead t§'2'2 Predicting the informativeness of an annotation
more annotation time.

The edae d ity f divides the i . hi Given this learned cost function, we can now define the com-
e edge density feature dvides the image into a hierar; e piML active learning criterion. Inspired by the class

chical gric! of cells and concatenates the edge densitymvith?no,[ion of thevalue of information (VOI), and by previous
each cell into a fe_atu_re vector. We reason that e_zdge de_nS'Bfnary single-label active learners (Kapoor et al (2007b))
C(_)UId be a good |nd|cator_ of the nur_nber of objects, SINC&ye derive a measure to gauge the relative risk reduction a
with a larger number of Ob_JeCtS Inan image there are bOunﬂew multi-label annotation may provide. The main idea is
T[O be more edge_s separatlng them. The h|era_rchy, by Cap_tL{'Ei evaluate the candidate images and annotation types, and
ing edge dgnsmes at multiple scales, helps in dealing W'”bredict which combination (of image-+type) will lead to the
objects of different scales. greatest net decrease in risk for the current classifiernwhe

The color uniformity feature computes the standard deeach choice is penalized according to its expected manual
viation of the r, g, b values of every pixel in the image baseckffort. In contrast to previous VOI methods, our measure en-
on a small neighborhood surrounding it, and obtains a hisables the multi-label setting and considers multiple tygfes
togram of the standard deviations. With more objects we exannotations to select from.
pect larger standard deviations in a neighborhood compared pefining the risk terms. At any stage in the learning
to a small number of smoothly varying regions such as skyprocess the dataset can be divided into three differenspool
grass, etc. Xy, the set of unlabeled examples (bags and instanags);

We gather the data online, using Amazon’s Mechanicathe set of labeled examples; aAgh, the set of partially la-
Turk system, where we can pay anonymous users to sepeled examples, which contains all bags for which we have
mentimages of our choosing. The users are given a polygomnly a partial set of bag-level labels (refer back to Figure 3
drawing tool to superimpose object boundaries, and are inf the label on an image is considered to be a binary vector
structed to name and outline every major object (see Figef lengthC, then the images it are examples where the
ure 7). The system times their responses. Thus the labels dinary label vector is completely known. Imagestp are
the training images will be the times that annotators needeexamples where none of the labels are known, and images in
to complete a full annotation. To account for noise in theX» are examples where some of the elements in the vector
data collection, we collect a large number of user responsesnd labels on some of its instances are known. An example
per image. Even if users generally have the same relativis moved fromX’; to X'» when any one of its unknown la-
speeds (faster on easy ones, slower on harder ones), their diels is requested. An example is moved fratmto X7, only
solute speeds may vary. Therefore, to make the values comhen the labels on all its instances have been obtained.



(@) Name an object in the image (unla-(b) Label the specified region (unlabeled(c) Segment the image and name all ob-
beled bag). instance). jects (label all instances).

Fig. 8 The three candidate annotation types (or “levels”) that @preach chooses from when formulating a request.

Let r; denote the risk associated with misclassifying anwhere we compute the probabilities for bags using Eqgn. 3,
example belonging to clags The risk associated with, ~ andPr(/|X;) is the true probability that unlabeled example

is: X, has label, approximated aBr (| X;) ~ p({|X;).
For the partially labeled data, the risk is:
Rl = 2. 2 n(l=piXa), @ R@ap) = Y Yn-ax) ®
Ked ek X.€Xp lEL;
wherep(l|X;) is the probability thatX; is classified with + Z ri (1 —p(l1X;)) p(1|X5),
labell. Here, X; is again used to denote both instances and leU;
bags andL; its label(s). If X; is a training instance it has whereU; = L\ L;.
only one label, and we can compuyt€| X;) via the current The valuer; is the risk associated with misclassifying
MIML classifier. an example belonging to clagsspecified in the same units
If X, is a multi-label bag in the training set, we computeas the cost function in Section 3.2.1. Intuitively, it shabre-
the probability it receives labélas follows: flect the real cost of a classification mistake, as our allgorit

directly trades off the cost of the manual labeling against
; i i the damage done by misclassification. While this can be set
pUUIX:) = p (lahsoay,) =1 = H(l —pUllz3)). () pased on realistic system requirements, we interpret ftes t
=t cost of manually fixing a classification error (e.g., an aver-
For a bag tanot belong to a class, it must be the case tha@9€ Ségmentation requires 50 secs). If one preferred td avoi

none of its instances belong to the class. Thus the probyabili €70rs on a particular class, that could pe encoded with vari
of a bagnot having a label is equivalent to the probability abler; values per class lab&INote that; is not a parameter
thatnone of its instances have that class label. that needs to be optimized for performance; rather, it gives

The MIML classifier implicitly assumes that every im- flexibility for situations that have real costs associatéith w

Uz

age/instance can be classified into on€'dabels. However, thetask. _ .

in the more general case, the dataset can also contain images Computing the value of information. The total cost
that do not necessarily belong to theclasses. Such images ! (X, Xu, Xr) associated with a given snapshot of the data
are given a “negative” label which specifies that none of théS the total misclassification risk, plus the cost of obtwgni
instances/regions in the image belong to any of the classé&d the labeled data thus far:

in {1,...,C?}, similar to the “negative” label in a standard 7'(Xz, X, Xp) = R(X1) + R(Xv) + R(Xp),

MIL formulation. In this case, we weighi(/| X;) with the + Z Z c(xh,

probability of X; belonging to any one of th€' classes as XieXp leLs

against the “negative” class, which is obtained by trainingyherexz = X, U Xp, andC(-) is defined in Section 3.2.1.
a standard MIL classifier. Note that whéh= 1, a single We measure the utility of obtaining a particular annota-

foreground class, the above reduces to the standard MIL sgon by predicting the change in total cost that would result
lution sincep(l|.X;) is trivially 1. Similarly, in the absence of from the addition of the annotation t&;,. Therefore, the
a “negative” class the above reduces to the MIML solution.yg|ye of information for an annotationis:

The corresponding risk for the unlabeled data is: VOI(z) = T (Xp, Xy, Xp) — T (9& Xy )Ep> (6)
=R(Xr) + R(Xy) + R(XP)

C
R(Xy) = > D n(l=pX:) Pr(l] Xy), @) ~ (R(A) + R(E) + R(Xp)) - C(2)

X,eXy l=1
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where X, X7, Xp denote the set of labeled, unlabeled and Curront Ettort Issue request:
partially labeled data after obtaining annotatiomote that —>| category | |prediction| | (Setaful.
z could be any one among the three annotation types de- models function | | onimage #32.7
scribed in Figure 8. If all the labels on the example have been g
obtained through then the example is moved to the labeled 4 Human
pool, i.e., X, = X. U z. On the other hand, if the example ‘:T. Selection annotator
contains instances (regions) with no label informatiomeve ?
after obtaining annotation then the example is moved to V v
the set of partially labeled data, i.e0p = Xp U z. Simi- o

. . artially an Labeled,
ggyé;h:pzfsggteeéssoc|ated withis removed fromYy or Uin:'l;l;zl:d weait:lya ibseled seigmn;ented

ges
A high VOI for a given input denotes that the total cost

would be decreased by adding its annotation. So, the classi-

fier seeks annotations that give maximal VOI values. Fig. 9 The summary of our approach. After learning from a small
initial set of labeled images, our method surveys any availablig un

E_stimati_ng risk for_candidate anno_tations' The VOI'  yqjed and partially labeled data. The VOI of every candidateota-
function relies on estimates for the risk of yet-unlabeledion among three different types of annotations is computentjtsie
data, so we must predict how the classifier will change giveexpected change in risk and the predicted effort of obtaitiiegan-
the candidate annotation, without actually knowing its |g-notation given by our cost predictor. The annotation and eXamjth

. o . . the largest VOI is then selected and a human provides the aiomtat
beI(s_). We estimate the t.Otal risk induced by incorporaing afier which the example is moved from the unlabeled/partiatigled
candidate annotation using the expected valuR(X.) +  pool to the partially/fully labeled pool as appropriate eTprocess re-
R(Xy)+R(Xp) = E[R(XL)+R(Xy) +R(Xp)], hence- peats until there are no more examples with positive VOI, or dnee
forth denoted byE allowed annotation cost limit has been reached.

If the annotatiore will label an unlabeled instance (Fig-
ure 8(b)), computing the expectation is straightforwairte
that instance can simply be removed frafn and added to  re-train the classifier with the given labels added, and then
X, to evaluate the risk were it assigned each offttgossi-  draw the remaining label according &g ~ Pr(l|z;), for

ble labels in turn: le{1,...,C}, wherez; denotes the one instance currently
under consideration. For bagthe expected total risk is then
E=>)" (R(XL Uz®) + R{ Xy, Xp} ~ z)) Pr(l|z), the average risk computed over all samples:
lelL
()

1 S
whereL = {1,...,C} is the set of all possible label as- E = < STREXL N zP UL L PR
signments forz. The valuePr(l|z) is obtained by evaluat- k=1
ing the current classifier om and mapping the output to  + R(Xu ~ {z1,22,...,2m}) + R(Xp)), (8)

the associated posterior, and risk is computed based on the

(temporarily) modified classifier with(") inserted into the

labeled set. Similarly, if the candidate annotatiowill add ~ wherek indexes theS samples. We compute the risk df,

an image-level label to an unlabeled or partially labelegl ba for each fixed sample by removing the bagrom the un-

(Figure 8(a)), therr(/|z) is calculated using Eqn. 3. labeled or partially labeled pool, and inserting its insem
However, if the annotatiom entails fully segmenting With the label given by the sample’s label assignment. Note

and labeling an image with/ automatically segmented re- that while computing the VOI of a candidate annotation we

gions (Figure 8(c)), we need to calculate the utility of alta  have no supervision information on that example, includ-

ing the joint set of labels for all of a bag’s instances. Sincéng the object outlines. Hence, the computation of VOI is

there areC’™ possible labelings = {1,...,C}™, adirect performed using segments/regions generated using an auto-

computation of the expectation is impractical. Instead wenatic segmentation algorithm. Once we obtain a complete

use Gibbs sampling to draw samples of the label assignmefggmentation of an image from the annotator, we use the

from the joint distribution over thé// instances’ descrip- actual region outlines and labels to retrain the classifier.

tors. Letz : ){Zl’ T ffl”} be the bag’s instances, and let ¢, ting the VOI values for all unlabeled data, espe-
2(?) = {(21 Y (e )} denote the label assignment cja|ly for the positive bags, requires repeatedly solving t
we wish to sample, witla; € {1,...,C}. To sample from classifier objective function with slightly different infsy

the conditional distribution of one instance’s label githea  to make this manageable we employ incremental SVM up-
rest—the basic procedure required by Gibbs sampling—weates (Cauwenberghs and Poggio, 2000).



Fig. 11 Example images from the MSRC dataset. The MSRC dataset
contains 21 categories, and most images have multiple categories
them (eg: “building”, “road”, “sky”, “tree”).

Ave. AUROC Ave. AUROC
Approach

Fig. 10 Example images from the SIVAL dataset. Each row illustrates (img) (region)
one of the 25 objects. Ours 0.896+ 0.00 0.91+ 0.01
MLMIL (Zha et al, 2008) 0.902 0.863

Table 1 Five-fold cross-validation accuracy when training with only

3.3 Summary of the algorithm image-level labels,

We can now actively select multi-label, multi-level image

annotations so as to maximize the expected ber_pfit .re!a_tingel examples, (2) its ability to accurately predict anno-
to the manual effort expended. The MIML classifier is ini- 540 costs, (3) its effectiveness as an active learnenwhe

tially trained using a small number of tagged images. To gelg|eting from three different types of annotations on both
each subsequent annotation, the active learner surveys all binary and multi-label problems, (4) the effect of introduc

maining unlabeled and partially labeled examples, con®utg,y e cost predictor in the active selection function, and

their VOI, and requests the label for the example with theg) the robustness of our approach with respect to the linitia
maximal value. After the classifier is updated with this labe training set.

the process repeats. Figure 9 provides a high-level summary
of the approach. The final classifier can predict image- and
region-level labels, in binary or multi-class settings. 4.1 Multi-label visual category learning with the MSK

In our first experiment, we evaluate our proposed multiflabe
set kernel classifier's effectiveness in learning usingyonl

) ) ) image-level labels on images containing multiple objects.
To validate our method we use two publicly available dagse{yq givide the MSRC v2 into five folds containing about an

5 )
the SIVAL? dataset and the MSRhalataset, since they have equal number of images, as is done by Zha et al (2008). We
been used to evaluate previous MIL and MIML based apgpqqse one part as the test set, one to set parameters, and
proaches which allows us to compare with state-of-the-aff»in on the rest. We segment the images with Normalized
methods in the two settings. Additionally, the MSRC is acyts into a small number of segments (10 in our experi-

common benchmark for multi-class object segmentation. ments). For each segment we then obtain texton and color

The SIVAL dataset contains images from 25 objects ir"histograms, as in (Shotton et al, 2006). We learn a dictionar

cluttered backgrounds, while the MSRC v2 contains 591 imbf textons by convolving the images with a 38-dimensional

ages from 21 classes and a variable number of objects PRfar hank and running K-means clustering to obtain 420

image, with 240 images and 14 classes in the (subset) Vi,ons. For color histograms we obtain a 120-dimensional

See Figures 10 and 11 for examples. In all MSRC experigq ooy by concatenating a 40-dimensional histogram of each
ments we use an RBF kernel with= 10, and setthe SVM  opannel'of the LUV representation of the image.

paramgt_er_s (including_the sigmoid parameters for the SVM Each image is a bag, and each segment is an instance.
probabilistic outputs given by the method of (Platt, 19991 1041 the MIML classifier, we use only image-level (bag-
based on cross-validation. We ignore all “void” regions InIevel) labels, i.e., we withhold all the pixel-level labelsr-

the MSRC IMages. ) i ing classifier training. We first compare against the apgroac
In the following subsections, we evaluate five aspects of 7,5 et a1 (2008), who provide state-of-the-art results on
our approach: (1) its accuracy when learning from multi-, o \\SRrc dataset while learning from image-level labels.
2 http:/iwww.cs.wustl.edu/accio/ Table 1 shows the average AUROC when predicting la-
3 http:/iresearch.microsoft.com/ens/projects/objectclassrecognitiodiels on newimages (second column) or newegions (third

4 Results
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column). For image-level prediction our results are com4les et al (2008), and where the same VOI function is used
parable to the state-of-the-art in MIML (Zha et al (2008)), but is restricted to actively label only instances), as wasl|
whereas for region-level prediction we achieve a notable impassive learning. For the passive baseline, we consider ran
provement (0.91 vs. 0.86). This appears to be a direct cordom selections from amongst both single-level and multi-
sequence of our Multi-label Set Kernel, which weighs thelevel annotations, in order to verify that our approach does
region descriptors so as to represent an image by its moaebt simply benefit from having access to more informative
relevant instances for each image-level label. As a reselt, possible labels.
are able to directly separate novel regions from each class The SIVAL dataset contains 1500 images, each labeled
within a new image, and not just name objects that occur imvith one of 25 class labels. The cluttered images contain
it. objects in a variety of positions, orientations, locaticensd

Next we compare against the approaches of Shotton et Bgjhting conditions. The images have been oversegmented
(2006) and Winn et al (2005), which use pixel-level labelsinto about 30 regions (instances) each, each of which is rep-
(full segmentations) to train a multi-class classifier.tRes  resented by a 30-d feature capturing the average color and
ing our method to only image-level labels, we obtain a regiottiexture values of the segment and each of its cardinal neigh-
based accuracy df4.1% + 2.9 over five trials of approxi- bors. These features are provided with the SIVAL dataset
mately equal train-test splits. In comparison, the acgurac®. Thus each image is a bag containing both positive and
obtained for the same test scenario is 70.5% in Shotton et akgative instances (segments). Labels on the training data
(2006), and 67.6% in Winn et al (2005). Using both region-specify whether the object of interest is present or not, but
and bag-level labels we obtain an accuracg@®@B%. Thus the segments themselves are unlabeled (though the dataset
with much less manual training effort (image tags), our redthdoes provide ground truth segment labels for evaluation pur
performs quite competitively with methods trained with ful poses).
segmentations; this illustrates the advantage of the multi  For Gibbs sampling, we generate= 25 samples with
label multi-instance learner in effectively utilizing wea  an initial burn-in period of 50 samples. This number was set
supervision. arbitrarily; later experiments increasing the sample size

Finally, using the NSK (Gartner et al (2002)), which es-50 did not improve results significantly, though in general
sentially removes our kernel weight mapping, the accuraclarger samples should yield more accurate VOI estimates.
for this test would only bé&5.95% 4= 1.43. This result indi-  The risk parameterr() and the cost of labeling a single in-
cates that the proposed method to map different regions tstance are all set to 1, meaning we have no preference for
the image-level labels is more effective. false positives or false negatives, and that we view a mis-

classification to be as harmful as requiring a user to label
one instance.

4.2 Actively learning visual objects and their foreground As the SIVAL dataset contains exactly one object perim-
regions age (see Figure 10), we do not expect the segmentation costs

In this section we demonstrate our approach to activelylear!® Vary on a per example basis. Therefore, for this dataset
visual categories for both the binary setting, where an enag"Ve attribute a s!ngle cost to all annotat|0.ns of a partlcular
contains a single object of interest in a cluttered backgdou YP€: TO determine how much more labeling a positive bag
as well as the multi-label setting, where an image contain€OStS relative to labeling an instance, we performed a user
multiple familiar objects that must be segmented and classFtudy. Users were shown oversegmented images and had to
fied. We test both datasets described above. click on all the segments belonging to the object of interest
We provide results by simulating the active learning pro—The baseline task was to provide a present/absent flag on the

cess: when the system requests an annotation on an imaljé?ges. For segmentation, obtaining labels on all positive

example, we satisfy the request using the ground truth |28€gMeNts took users on average four times as much time as
bels. For instance, when the request is to outline all the o2etting @ flag. Thus we set the cost of labeling a positive bag

jects in the image, we use the ground truth segmentatioff 4 for the SIVAL data. The value agrees with the average
provided with the dataset (SIVAL/MSRC) to obtain all the SParsity of the dataset: the SIVAL set contains about 10%
objects and their labels. However, recall that when cateula POSitive segments perimage. The users who took partin the

ing the VOI of a region/image, the system uses an automatfeXPeriment were untrained but still produced consistent re

low-level segmentation of the image. sults. o _ _ N
The initial training set is comprised of 10 positive and

10 negative images per class, selected at random. Our ac-
tive learning method must choose its queries from among
10 positive bags (complete segmentations), 300 unlabeled

4.2.1 Active selection from MIL data

For the binary MIL setting, we provide comparisons with
single-level active learning (with both the method of Set- 4 hitp://iwww.cs.wustl.edutsg/accio/SIVAL.html
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Fig. 12 Results on the SIVAL dataset. Sample learning curves per cladsagaraged over five trials. Our method corresponds to the fiéwiel
active” curves. First six are best examples, last two are worst. E@aime amount of annotation cost, our multi-level approach |leaons quickly
than both traditional single-level active selection as welbath forms of random selection.
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= 8 3 Cost Our Approach Settles et al (2008)

8 ‘ - Random  Multi-level Gain over | Random MIU Gain over
g il + + Active Random (%) Active  Random (%)
< 4 - x 10 | +0.0051 +0.0241 372 +0.023  +0.050 117
£, i P 20 | +0.0130 +0.0360 176 +0.033  +0.070 112

5 ‘ E g 50 | +0.0274  +0.0495 81 +0.057  +0.087 52
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) Multi‘—level Singlé—level Multi‘—level Singlé—levél

active active random random
Fig. 13 Left: Summary of the average improvement over all 25 SIVAL categoffies half of the annotation cost is useglight: Comparison
with Settles et al (2008) on the SIVAL data, as measured by tmge improvement in the AUROC over the initial model for insieg labeling
cost values.

instances (individual segments), and about 150 unlabeled All four methods steadily improve upon the initial clas-
bags (present/absent flag on the image). We use a quadratifier, but at different rates with respect to the cost. (All
kernel, K (z,y) = (1 + a¢(x)T¢(y))?, with a coefficient methods fail to do better than chance on the ‘dirty glove’
of a = 107, and average results over five random trainingclass, which we attribute to the lack of distinctive textare
partitions. color on that object.) In general, a steeper learning curve i
dicates that a method is learning most effectively from the

Figure 12 shows representative (best and worst) learn- . )

. : upplied labels. Our multi-level approach shows the most
ing curves for our method and the three baselines, all Ozi nificant gains at a lower cost, meaning that it is beseduit
which use the same MIL classifier (NSK-SVM). Note that 9 9 ' g

; . ) for building accurate classifiers with minimal manual effor
the curves are plotted against the cumulatest of obtain- g

. L on this dataset. As we would expect, single-level active se-

ing labels—as opposed to the number of queried instances— .. .
. . : .Iﬁctlons are better than random, but still fall short of our

since our algorithm may choose a sequence of queries with . . : .

: . ) tmultl-level approach. This is because single-level actire

non-uniform cost. All methods are given a fixed amount o

. lection can only make a sequence of greedy choices while
manual effort (40 cost units) and are allowed to make a se- y d v y

. . . our approach can jointly select bags of instances to query.
guence of choices until that cost is used up. Recall thatta co b . y 9 to query
- nterestingly, multi- and single-level random selectipes-
of 40 could correspond, for example, to obtaining labels o LT . -
20 orm quite similarly on this dataset (see boxplots in Fig-

9 i O = iti i - . . . . .

1 = 40instances ofp = 10 positive bags, or Some miX= - e 13 (left)), which indicates that having more unambigu-

ture thereof. Figure 13 (left) summarizes the learning esirv . Iy
ous labels alone does not directly lead to better classifiers

for all categories, in terms of the average improvement at a S .
. . : . . Unless the right instances are queried.
fixed point midway through the active learning phase.
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At a cost 0f24 units the mean AUROC over all 25 classes 60
for active selection turned out to 9e723, which is92% of
the accuracy achievable if usiadj the labels and examples
in the unlabeled pool. To reach the same accuracy random
selection requireg4 units of cost. This means that to reach
92% of the upper-bound accuracy, active selection requires
45.5% less annotation cost than the passive learner.

The table in Figure 13 compares our results to those re-

[4)]
a1

a
o

R
-e-Multi-label Multi-level active
-»-Single—level active

Mean recognition rate
(region—level labels)

ported in (Settles et al, 2008), in which the authors train an o Random
initial classifier with multiple-instance logistic regression, 0 i/(l)o | C100%) 1500
and then use the MI Uncertainty (MIU) to actively choose anual Cost (sec)

instances to label. To our knowledge this is the only other ex 55¢

isting approach to perform active selections with MIL data,

making it a useful method to compare to. Following Settles

et al (2008), we report the average gains in the AUROC over

all categories at fixed points on the learning curve, averag-

ing results over 20 trials and with the same initial training

set of 20 positive and negative images. Since the accuracy

of the base classifiers used by the two methods varies, it is

difficult to directly compare the gains in the AUROC. The = Random :

NSK-SVM we use consistently outperforms the logistic re- 0 iﬁgnum 0182{’ (360)1500

gression approach using only the initial training set; dwen

fore active learning our average accuracy is 68.84, corﬂparé:ig- 14 Legrning curves Whe_n actively or randomly selecting multi-

t052.21 in (Settles et al, 2008). Therefore, to aid in Comparlzeil_el and single-level annotationBop: Rgglon-level accuracy for t.he

class MSRC v2 dataset plotted against ground truth Bastom:

ison, we also report the percentage gain relative to randoRegion-level accuracy when 80 random images were added tmthe

selection, for both classifiers. The results show that our apeled pool. Our multi-level active selection approach yighdssteep-

proach yields much stronger relative improvements, agaiﬁSt_ learning curves'while rapdom selection lags behind, vgagtinno-

. . . . . . tation effort on less informative examples. When 80 random images

illustrating the value of allowing active choices at muktip added to the unlabeled pool, random selection lags everefudimce

levels (the method of Settles et al (2008) only allows activ@nere are more uninformative images that it can choose.

queries for instance-level labels). For both methods, ére p

cent gains decrease with increasing cost; this makes sense,

since eventually (for enough manual effort) a passive Erarn demonstrate the impact of using our multi-label activecsele

can begin to catch up to an active learner. tion function in the more general multi-label setting, wer
While these results illustrate the MIL scenario where im-gn image contains multiple objects of interest plus clutter

ages are bags of regions, our approach is applicable for aknd selections can be made from different types of annota-

scenarios where there are two label granularities. In a preions.

vious paper (Vijayanarasimhan and Grauman (2008a)), We \ye givide the examples into five folds containing an

:\r;lﬁ_oglucecilan(_)thgr |rr;]age-cr:asilf|cat|odn scenario ;Or t_zv:m equal number in each and use the first part for training and
Is well-suited, where the keyword associated with e og for testing. We construct the initial training sstts

category is used to download groups of images from mUItI'that each class appears in at least five images, and use image-

a1
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I e o]
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x-"*‘ "¢‘-
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* -~
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--[-e-Multi-label Multi-level active
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Mean recognition rate
(region—level labels)
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O e

objec"t of intere;t, while many others may be irrelevant. Th‘:fraining examples, or image-level labels from any unlathele
goal is to predict the presence or absence of the category @(ample. We set, = 50 for all classes, which means that

new images. See Vijayanarasimhan and Grauman (Zoosg}ach misclassification is worth 5@f user time. The param-

for active selection results for this alternate MIL sceoari eterr; should reflect the real cost of a classification mistake.
Our choice of the value of; is based on the fact that an error
4.2.2 Active selection from MIML data made by the automatic labeling would take arounds%0
manually fix for the average image. For this experiment we
In the previous section we considered active selection iffix the costs per type using the mean times from real users:
the binary setting when the image contains a single objed0 s for complete segmentations, $@dor a region outline,
among background clutter. Next we use the MSRC dataset tand 3s for a flag. We compare our approach to a “passive”
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(a) Initial training set.

—
- Name ar Learner. Name an object.
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Oracle: grass Oracle: tree Oracle: water. Oracle: building.

(b) Annotations selected by the active learner in order (royora

Fig. 15 Annotation queries selected by our method (right) on an exaroplstarting from a small training set containing two examplesczess
(left). Right: Each image (from left to right) represents the example with #ngelst VOI as selected by our active learner on a sequence of
iterations. The active learning query (one among a region,lanemage tag, or a complete segmentation) is displayed at thentof the image
along with the oracle’s answer. For a query on a region, theesponding region is highlighted in the image; for an imagettagtext on the top

of the image represents what label is expected to produce shedakiction in risk.

selection strategy, which uses the same classifier but pickke more uninformative images that are present, the more

labels to receive at random, as well as a single-level activeandom selection will lag behind.

baseline (traditional active learning) that uses our VOicfu When active and random selection are run to comple-

tion, but only selects from unlabeled regions. All methodstion on all labels, both methods reach an accuradfdf%

are given a fixed cost and allowed to make a sequence &f random selection requires 5776 units of manual effort to

label requests until the cost is used up. reach the upper-bound while active selection requires only
3075 units. Thus with active selection we reach the upper

bound using46.7% less cost than the passive learner re-
Figure 14 shows the resulting learning curves for thegyires,

MSRC v2. Accuracy is measured as the average value of
the diagonal of the confusion matrix for region-level predi _ .
tions on the test set. All results are averaged over five rarft-2-3 Active selection examples

dom trials. The proposed multi-level active selectiondsel ) ) ) )
the steepest learning curves. Random selection lags hehid this section we look at the types of annotation queries tha

wasting annotation effort on less informative examples. AQUI @pproach requests based on some qualitative and quan-
before, single-level active is preferable to random silagt  ttative results. Figure 15 shows annotation queries tedec
yet we get best results when our active learner can choo&d OUr approach during the first 12 iterations of an exam-
between multiple types of annotations, including segmentaP!€ run starting from a small training set consisting of two
tions or image flags. The total gains after 1800 secs are Si@age tags per class. The initial training set is displayed i
nificant, given the complexity of the 21-way classification'9uré 15(a), and Figure 15(b) shows the first 12 queries
problem with a test set containing 1129 image regions. Notg€!ected by our approach in row major order. The type of
that the random selection curve is probably an over-estimaiuery and the result from the oracle are displayed at the bot-
of its quality; since we limit the unlabeled pool to only im- oM of the image. We also highlight the region being queried
ages from the MSRC, any example it requests is going to b the case of a region label; text on the top of the image
fairly mformatlve' Figure 14 (bot.tom) shows results foeth Note that since we use a different train-test split for experisent
same setting when 80 random images are added to the UR-his section, this upper-bound is not comparable to theracgure-
labeled pool with the “negative” class label, indicatingtth ported in Section 4.1
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SIVAL dataset 4.2.4 Effect of initial training set size

%) 8 -‘-‘unle{beled ins&ances ‘ ‘ ‘
@ 7[|==-unlabeled bags ] A well-known concern when performing active selection is
™ 6-?;?:2‘5&2?22) ] that a faulty initial model might select uninformative exam
; %5, o ples to label and thus never converge to the most general
2 347 hypothesis. Thus, we next consider the robustness of our ap-
23 proach by varying the number of training labels used to train
g '§_3’ the initial classifier. For the MSRC dataset we train the ini-
<_‘§ S 2 1 | tial classifier with two, four, and eight image tags per class
E U (42, 84, and 125 image tags overall) and then perform active
© o selection with each model. In Figure 17, we compare our

0 2 4 N I_e 8 10 multi-level active selection approach against a multelev

imeline

random baseline and the best possible selection criterion.
_Fig. 16 _The cumulative number of labels acquired for each type withThe best possible selection is obtained by computing the ac-
increasing number of queries. Our method tends to request complefﬁaﬂ VOI of an example using its ground truth label. This is
segmentations or image labels early on, followed by queriesmen u to compare how closelv our expected VOI can approximate
labeled segments later on. This agrees with the intuition féaaer p y p s pp .
segmentations are worth their higher annotation costs asassier ~ the actual VOI. We average results over five random trials.
becomes stronger. On all three initializations, particularly for the smaller

sets, our active selection approach has a larger slope than

shows which image tag our approach thinks would producgndom selection. In addition, our active selection foow
the biggest reduction in the risk (thevith the largest value the trend of the best possible selection criterion. Thissil
in the summation in Equation 7). trgtes thg robustness of the approach to thg |n|t|al|g§ﬁmn
The annotations requested by our approach are dom_ﬁh's particular dataset. Also, since our.multl—class. F:fms
nated by image tags, which is reasonable considering thd§ &" €nsemble of a large number of binary classifiers, even
are the least expensive labels among the three types. At tHth two image tags per class the final classifier could have
same time, the images for which tags are requested appear@8°U9h €xamples to discriminate between the classes.
consist of a small number of clearly defined objects (‘sky’, e show results for the same experiment for binary clas-
‘water’ in the second and third images, ‘water’, ‘building’ sification on the SIVAL dataset in Figure 18. The figure
in the first image, etc.). On more complex images, such a8hows some representative (best and worst) learning curves
the sixth image of the airplane, a complete segmentatioROMparing our selection function and a random baseline star
is requested. Also a region label on the ‘tree’ region is reing with two, six and twenty examples equally distributed
quested on the tenth image, even though a tree image tag@§ross the positive and negative classes. The resultserre av
already available on the same image in the training set. Thdged over six random trials. Note that the three curves start
illustrates that in some cases stronger annotations might [t different points on the cost axes because they start with
required, even when the classifier already contains weaké different number of training examples. However, accura-
information about a class. cies at a particular cost on the different curves are not nec-
The examples selected by our approach are also diver§ssarily comparable since the random initialization selec
in their appearance and class labels. For example, in the iftn €qual number of positive and negative examples, while
ages selected by our approach that contain the region ‘sky@ctive and random selection approaches select from an un-
the appearance of the region is distinct from the examplealanced pool of positive and negative examples due to the
of ‘sky’ already available in the training set. This is alket ©one-vs-all binary setting.
case for classes ‘building’ and ‘water’. The more variable results, as seen in the figure, could
Figure 16 shows the cumulative number of labels acpointto a harder dataset or the extremely low number of ex-
quired for each type of annotation with increasing numbegmples used in the binary setting as compared to the multi-
of queries on the SIVAL dataset for the case of binary clasclass setting. The first row of learning curves show exam-
sification. Our previous observation on the larger proporti ples where a good initialization (larger number of examples
of image tags holds true in this dataset too. In addition, ofelps the active selection criterion. On these examplgs it a
this dataset our approach appears to select complete segmegars that with smaller number of examples the active selec-
tations early on, followed by queries on unlabeled segmentéon criterion could be misled into regions of the hypotkesi
later on. Intuitively, as the classifier becomes strongeway ~ Space that do not necessarily correspond to the most general
be that fewer segmentations can provide adequate risk r&olution for the given training set.
ductions to mitigate their higher costs, and hence the less The first two curves in the second row are examples
expensive image tags become favorable. where even with very few training examples the active selec-
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Fig. 17 Effect of the initial training set size on the active selectiortlre MSRC dataset. The classifier is initialized with two (léfiur (middle),
and, eight (right) image tags per class, and active selectiomipared with a random baseline and the best possible selectienarribased on
the actual VOI. On the MSRC dataset our active selection @ités robust to the initialization and performs much bettenttendom selection

on all three initial training sets.
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Fig. 18 Effect of the initial training set size on active selection oa 81VAL dataset. We initialize the classifier with two, six, anchty image
tags equally distributed across positive and negative classedigilie shows some representative (best and worst) learning donas active
selection approach and a random baseline. On this dataset arsinétig set composed of only two examples produces sub-optimatiseie for

some classes.

tion criterion is able to match results with a larger inisat.

The final curve in the second row shows an example where
active selection performs worse than random on all three iniln the following sections we evaluate how well we can learn

tializations. These results suggest that active learnindgdc

4.3 Annotation costs and Active Selection

to predict the difficulty of segmenting images using image

be affected by the initialization on certain problems. How-features and the impact of using the predicted cost when
ever, note that we deliberately chose an extremely small inimaking an active selection.
tial training set (two, six examples) to illustrate this fpoi
Arguably, for most real applications one can reasonably ex4-3.1 Annotation cost prediction
pect to initialize the model with at least 10’s of labeled ex-

amples.

First, we isolate how well we can learn to predict the dif-
ficulty of segmenting images based on image features. To
train our cost function, we gather data with Amazon’s Me-
chanical Turk. Users are required to completely segment
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User | Number | Accuracy weights (0.61, 0.33 respectively), with the rest near zero.
N of 'TG%ges é;/f’;s Figure 19 shows the leave-one-out cross validation (Igo-cv
User 2 188 72.34 result when classifying images as easy or hard, for the users
User 3 179 70.95 for whom we had the most data. For the majority, accuracy
User 4 151 72.85 is well above chance. Most of the errors may largely be due
322:2 igz 22:2513 to our arbitrary division between what is easy or hard based
User7 | 169 67.46 on the mean.
User 8 179 79.33 To train a regressor we use the raw timing data and the
All users 210 73.81 same set of features. Figure 20 shows examples that were
Fig. 19 Accuracy of our cost function in predicting “easy” vs. “hard”, €asiest and hardest to segment, as measured by the ground
both for user-specific and user-independent classifiers. truth actual time taken for at least eight users. Alongside,
show the examples that our regressor predicts to be easiest
Easiest - ~and hardest (from a separate partition of the data). These ex
o : amples are intuitive, as one can imagine needing a lot more
_ clicks to draw polygons on the many objects in the “hardest”
S ) : + set. Figure 21 (left) plots the actual time taken by users on
i B - «~  animage against the value predicted by our cost function,
= as obtained with loo-cv for all 240 images in the MSRC v1
2 dataset. The rms difference between the actual and prddicte
g times is 11.1s, with an average prediction error of 22%. In
e comparison, predicting a constant value osgthe mean of
the data) yields an average prediction error of 46%. Given
Hardest that the actual times vary from 8 to 180and that the aver-
age cross-annotator disagreement was, 88 average error
of 11 sseems quite good.
Ei In order to verify that we were not simply learning a
g category-based level of effort, we looked at the actual and
predicted times split across different classes. Figureight]
8 shows a plot of the actual and predicted times broken across
% the different scene settings in the MSRC dataset. The x-axis
a shows the most dominant foreground class label in that par-

ticular scene layout. This figure shows that every classésce
Fig. 20 The easiest and hardest images to annotate based on actygyout contains images with varying difficulty in terms oéth
azs;sli:]r:g;i ‘(js;?to(;?f)' and the predictions of our cost fumcta 5 ration effort required by users. While some categories
have more variation than others (cow vs car) there is no di-
rect connection between the image class and the time taken

images from the 14-class MSRC v1 dataset while a scrip® provide annotations. The plot also shows that for most

records the time taken per image. We collected 25-50 annd&f the examples our cost predictor provides fairly accurate

tations per image from different users. Users could skip imPredictions of the annotation costs.

ages they preferred not to segment; each user was allowed

to label up to 240 images. However, no user completed alf 3.2 Active selection with a learned cost function

240 images. The fact that most users skipped certain im-

ages (Figure 19, column: Number of images) supports ourhus far we have fixed the costs assigned per annotation

hypothesis that segmentation difficulty can be gauged bype; now we show the impact of using the predicted cost

glancing at the image content. while making active choices. We train a binary multi-instan
We train both classifiers that can predict “easy” vs. “hardtlassifier for each MSRC category using image Iabel@on

and regressors that can predict the actual time in secoads. Th of the data per class, in five different runs. The restisluse

divide the training set into easy and hard examples, we sinfor testing. We compare two MIL active learners: one using

ply use a threshold at the mean time taken on all images.ost prediction, and one assigning a flat cost to annotations

Using the feature pool described in Section 3.2.1, we perAt test time, both learners are “charged” the ground truth

form multiple-kernel learning to select feature types fotth  cost of getting the requested annotation.

the user-specific data and the combined datasets. The edge Figure 22 shows representative (good and bad) learning

density measure and color histograms received the largestirves, with accuracy measured by the AUROC value. For
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Fig. 21 Left: Scatter-plot of the actual time taken by users to segment an ins&adkesvalue predicted by our cost function, for the 240 images
in the MSRC v1. The predicted and actual times are highly &ted, implying that our cost predictor has learned how diffian image is to
segment using only low-level image featurBsght: The actual and predicted times split across the different oategof images in the MSRC
dataset. The plot shows that most classes have images with varffiegltés, and assures that the difficulty measure we have ledsnedt
class-specific.
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Fig. 22 Representative learning curves when using active selectitimtiae learned cost predictor, as compared to a baseline thasraatiee
selections using a flat cost value. For classes like Tree, Cow, apthAe (shown here), the cost prediction produces more imprené per unit
cost, while for a few like Sky there is no significant differenemost likely because the images within the class are fairly comsiated equally
informative and easy to label.

% acc imp. Cost(secs) % Cost 5 Conclusions
CP NC saved
5 1140 | 1152 | +1.07 .
10 2452 | 31.41 | +21.94 Our approach addresses a new problem: how to actively choose
15 45.25 | 63.24 | +28.45 not only which instance to label, but also what type of image
20 165.85 | 251.10 | +33.95 . o . .
5 36573 | 54369 | +32.73 annotation to acquire in a cost-effective way. Our method is

ble 2 Savings i N - dict - ~general enough to accept other types of annotations or clas-
Table 2 Savings in cost when using cost prediction within the activegige s a5 Jong as the cost and risk functions can be appropri
learner.CP refers to using cost prediction aidiC is without cost.

Overall, our active selection takes less effort to attain theestevel  ately defined. We have shown that compared to traditional

of accuracy as a cost-blind active learner. active learning which restricts supervision to yes/no gues
tions, a richer means of providing supervision and a method
to effectively select supervision based on both infornratio

Tree, Cow, and Airplane, using the predicted cost leads tgain and cost to the supervisor is better-suited for bugdin
better accuracies at a lower cost, whereas for Sky thette is liclassifiers with minimal human intervention.
tle difference. This may be because most ‘sky’ regions look There are several directions of future work for our re-
similar and take similar amounts of time to annotate. search. The foremost is to reduce the computational com-
Table 2 shows the cost required to improve the base claplexity of the active selection criterion. With our impleme
sifier to different levels of accuracy. The fourth columnwhlo tation of the incremental SVM technique of Cauwenberghs
the relative time savings our cost prediction enables over and Poggio (2000) it takes on average 0.5 secs to evaluate a
cost-blind active learner that uses the same selectioty strasingle region and 20 secs to evaluate a bag (image) on a 1.6
egy. For larger improvements, predicting the cost leads t&Hz PC. This corresponds to about 15 minutes to choose
noticeably greater savings in manual effort—over 30% savwhich annotation to request when the dataset contaib@0
ings to attain a 25% accuracy improvement. bags (images) for-20 classes. Once an annotation is se-



20

lected it takes less than 0.1 secs to retrain the classifier. T Bunescu RC, Mooney RJ (2007) Multiple Instance Learning
most expensive step in selecting an annotation is the Gibbs for Sparse Positive Bags. In: ICML
sampling procedure coupled with the need to update a largéauwenberghs G, Poggio T (2000) Incremental and Decre-
number of classifiers in the one-vs-one setting. We are cur- mental Support Vector Machine Learning. In: NIPS
rently considering ways to alleviate the computationat.cos Collins B, Deng J, Li K, Fei-Fei L (2008) Towards Scalable
However, even without real-time performance, a distridute  Dataset Construction: An Active Learning Approach. In:
framework for image labeling that involves multiple anrota ECCV
tors could be run efficiently. Dietterich TG, Lathrop RH, Lozano-Perez T (1997)
Currently, we are exploring the problem of cost-sensitive Solving the Multiple Instance Problem with Axis-
batch selection, where the goal is to actively choose a set of Parallel Rectangles. Artif Intell 89(1-2):31-71, DOI
examples for labeling at once, while ensuring that the total http://dx.doi.org/10.1016/S0004-3702(96)00034-3
annotation request costs less than a given budget (Vijayd=ei-Fei L, Fergus R, Perona P (2003) A Bayesian Approach
narasimhan et al, 2010). to Unsupervised One-Shot Learning of Object Categories.
Additionally, if we wanted to use our method with the in-  In: ICCV
tention of targeting specific annotators who have variahle ¢ Fergus R, Fei-Fei L, Perona P, Zisserman A (2005) Learning
pabilities and speeds depending on image content, we could Object Categories from Google’s Image Search. In: ICCV
build user-specific cost functions, i.e., a separate SVM folsartner T, Flach P, Kowalczyk A, Smola A (2002) Multi-
each. Then, we could extend the VOI to choose not only Instance Kernels. In: ICML
what annotation type and image looks most promising, buereiner R, Grove AJ, Roth D (2002) Learning Cost-
also which user ought to be responsible for annotating it. Sensitive Active Classifiers. Artif Intell 139(2):137-174
Allowing further levels of supervision, such as sceneHaertel R, Ringger E, Seppi K, Carroll J, McClanahan P
layout, contextual cues or part labels, would enable ustoim (2008) Assessing the Costs of Sampling Methods in Ac-
prove the way in which human supervisors can interact with tive Learning for Annotation. In: Proceedings of Work-
computer vision systems. Generative models could be more Shop on Parsing German
suited to integrate such disparate cues. Extending the af@poor A, Grauman K, Urtasun R, Darrell T (2007a) Active
proach to generative models is another direction of regearc L€arning with Gaussian Processes for Object Categoriza-
we are planning to pursue. tion. In: ICCV
Finally, while we have concentrated mostly in the do-<&P00r A, Horvitz E, Basu S (2007b) Selective Supervision:
main of object recognition, the problem of comparing dif- GUI_dlng Superwsed Learning with Decision-Theoretic
ferent types annotations in a unified framework is potelgtial ~ Active Learning. In: [JCAI o _
applicable to several other domains both in vision and makWok JT, Cheung P (2007) Marginalized Multi-Instance

chine learning such as video annotation, tracking, or docu- Kernels. In:1IJCAI _
ment classification. Lanckriet GRG, Cristianini N, Bartlett P, Ghaoui LE, Jordan

Acknowledgements Many thanks to Alex Sorokin for MI (2004) Learning the Kernel Matrix with Semidefinite

helping us arrange the Mechanical Turk data collections Thi Programming. J Mach Learn Res 5:27-72 .
research was supported in part by NSF CAREER IIS-O?473‘5%(,a Y, Grauman K (2008) Foreground Focus: Finding

Microsoft Research, DARPA VIRAT, NSF EIA-0303609, Meaningful Features in Unlabeled Images. In: BMVC
and the Henry Luce Foundation. Li L, Wang G, Fei-Fei L (2007) Optimol: Automatic Online

Picture Collection via Incremental Model Learning. In:
CVPR

Maron O, Ratan AL (1998) Multiple-Instance Learning for
Natural Scene Classification. In: ICML

Platt J (1999) Advances in Large Margin Classifiers, MIT
Press, chap Probabilistic Outputs for Support Vector Ma-
chines and Comparisons to Regularized Likelihood Meth-
ods

Qi G, Hua X, Rui Y, Tang J, Zhang H (2008) Two-
Dimensional Active Learning for Image Classification.
In: CVPR

gQuelhas P, Monay F, Odobez JM, Gatica-Perez D, Tuyte-

laars T, VanGool L (2005) Modeling Scenes with Local

Descriptors and Latent Aspects. In: ICCV

References

von Ahn L, Dabbish L (2004) Labeling Images with a Com-
puter Game. In: CHI

Bach FR, Lanckriet GRG, Jordan MI (2004) Fast Kernel
Learning using Sequential Minimal Optimization. Tech.
Rep. UCB/CSD-04-1307

Baldridge J, Osborne M (2008) Active Learning and Loga-
rithmic Opinion Pools for Hpsg Parse Selection. Nat Lan
Eng 14(2):191-222

Bart E, Ullman S (2005) Cross-Generalization: Learning
Novel Classes from a Single Example by Feature Re-
placement. In: CVPR



21

Russell B, Torralba A, Murphy K, Freeman W (2005) La-
belme: a Database and Web-Based Tool for Image Anno-
tation. Tech. rep., MIT

Settles B, Craven M, Ray S (2008) Multiple-Instance Active
Learning. In: NIPS

Shotton J, Winn J, Rother C, Criminisi A (2006) Texton-
boost: Joint Appearance, Shape and Context Modeling
for Multi-class Object Recognition and Segmentation. In:
ECCV

Sivic J, Russell B, Efros A, Zisserman A, Freeman W (2005)
Discovering Object Categories in Image Collections. In:
ICCV

Sorokin A, Forsyth D (2008.) Utility Data Annotation with
Amazon Mechanical Turk. In: CVPR Workshops

Verbeek J, Triggs B (2007) Region Classification with
Markov Field Aspect Models. In: CVPR

Vijayanarasimhan S, Grauman K (2008a) Keywords to Vi-
sual Categories: Multiple-Instance Learning for Weakly
Supervised Object Categorization. In: CVPR

Vijayanarasimhan S, Grauman K (2008b) Multi-Level Ac-
tive Prediction of Useful Image Annotations for Recogni-
tion. In: NIPS

Vijayanarasimhan S, Grauman K (2009) What's It Going
to Cost You?: Predicting Effort vs. Informativeness for
Multi-Label Image Annotations. In: CVPR

Vijayanarasimhan S, Jain P, Grauman K (2010) Far-Sighted
Active Learning on a Budget for Image and Video Recog-
nition. In: CVPR

Weber M, Welling M, Perona P (2000) Unsupervised Learn-
ing of Models for Recognition. In: ECCV

Winn J, Criminisi A, Minka T (2005) Object Categorization
by Learned Universal Visual Dictionary. In: ICCV

Wu TF, Lin CJ, Weng RC (2004) Probability Estimates for
Multi-Class Classification by Pairwise Coupling. JMLR

Yan R, Yang J, Hauptmann A (2003) Automatically Label-
ing Video Data using Multi-Class Active Learning. In:
ICCV

Yang C, Lozano-Perez T (2000) Image Database Retrieval
with Multiple-Instance Learning Techniques. In: ICDE

Zha ZJ, Hua XS, Mei T, Wang J, Qi GJ, Wang Z (2008) Joint
Multi-Label Multi-Instance Learning for Image Classifi-
cation. In: CVPR

Zhou ZH, Zhang ML (2006) Multi-Instance Multi-Label
Learning with Application to Scene Classification. In:
NIPS



