

Problem

Image labels alone are insufficient supervision for learning complex visual recognition tasks.

Is the coach's team winning?

Is the skater's form good?

Is she attractive?

Our Idea

- Annotators should not only assign class labels (the "what"), but also give a rationale indicating their reasoning behind the label (the "why").
- We propose two modes for visual rationales: **Spatial**: draw polygons around important image regions Attribute: name attributes most influential in label choice

Attribute	Rat
a_1 : pointed toes	\checkmark
\mathbf{a}_2 : on ground	
a_3 : balanced	
a ₄ : falling	
a_5 : knee angled	\checkmark
task: Is the skater's	form g
How can you tell?	

SVM Training with Contrast Examples

- Require classifier to treat *contrast example* that *lacks* the important features as "less positive" than the original.
- We adopt the SVM objective developed by Zaidan et al., [HLT 2007] for sentiment analysis in documents:

Minimize: $\frac{1}{2} \| \boldsymbol{w} \|^2 + C \left(\sum_i \xi_i \right) + C_C \left(\sum_i \gamma_i \right)$ Subject to: $\forall i \ y_i w^T x_i \ge 1 - \xi_i$ $\forall i \ y_i(\boldsymbol{w}^T\boldsymbol{x}_i - \boldsymbol{w}^T\boldsymbol{v}_i) \geq \mu(1 - \gamma_i) \qquad \xi_i, \gamma_i \geq 0$

where \mathbf{x}_i is the *i*-th training example, \mathbf{v}_i is its corresponding contrast example, and y_i is the class label {1, -1}.

ANNOTATOR RATIONALES FOR VISUAL RECOGNITION Jeff Donahue and Kristen Grauman Department of Computer Science – The University of Texas at Austin

tionale?

lood?

Impact on Classifier Contrast examples refine the resulting hyperplane

- Test our spatial rationales on 15 Scene Categories dataset with annotations from 545 unique MTurk workers
- **Task**: Name the scene type

- Scenes often lack clear semantic boundaries (e.g., city vs. street), making this a good task for rationales
- Visual rationales outperform all three baselines for 13 of 15 classes

Classes w/	Ours		Rationales	Mutual
largest gains	(mAP)	Originals Only	Only	Information
Kitchen	0.1395	0.1196	0.1277	0.1202
Living Rm	0.1238	0.1142	0.1131	0.1159
Inside City	0.1487	0.1299	0.1394	0.1245
Coast	0.4513	0.4243	0.4205	0.4129
Highway	0.2379	0.2240	0.2221	0.2112
			7	7

Rationales != foreground segmentation / Rationales > discriminative feat. selection

Visual Rationales \rightarrow Contrast Examples

- or "not" (bottom 25%)

especially for males

	Male		Female	
	N = 25	N = 100	N = 25	N = 100
Ours (Our				
Annotations)	55.40% ↑	60.01%	53.13%	57.07%
Ours (MTurk				
Annotations)	53.73%	54.92%	53.83%	56.57%
Originals				
Only	52.64%	54.86%	54.02%	55.99%
			• •	_

Net savings in annotation effort, and better accuracy!

Results: Public Figure Attractiveness • Test our *attribute rationales* on PubFig dataset • Task: Classify public figure as attractive or not

Large improvement, especially with "homogeneous rationales" for all classes

	Homogeneous		Individual	
	Ours	Originals	Ours	Originals
Male	68.14%	64.60%	62.35%	59.02%
Female	55.65%	51.74%	51.86%	52.36%

- The "why" matters

Results: Hot or Not?

• Test our *spatial rationales* on hotornot.com using provided ratings +104 MTurk rationales • Task: Classify male/female as "hot" (top 25%)

• Visual rationales improve accuracy,

Youth Smiling Straight Hair Narrow Eyes

Youth Black Hair Goatee Square Face Shiny Skin High Cheekbones

Conclusions

Positive results in multiple domains

Rationales give deeper insight than a class label alone, especially useful in subjective tasks