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Abstract

Traditional supervised visual learning simply asks anno-
tators “what” label an image should have. We propose an
approach for image classification problems requiring sub-
jective judgment that also asks “why”, and uses that infor-
mation to enrich the learned model. We develop two forms
of visual annotator rationales: in the first, the annotator
highlights the spatial region of interest he found most influ-
ential to the label selected, and in the second, he comments
on the visual attributes that were most important. For either
case, we show how to map the response to synthetic contrast
examples, and then exploit an existing large-margin learn-
ing technique to refine the decision boundary accordingly.
Results on multiple scene categorization and human attrac-
tiveness tasks show the promise of our approach, which can
more accurately learn complex categories with the explana-
tions behind the label choices.

1. Introduction
Image classification is an important challenge in com-

puter vision, and has a variety of applications such as
automating content-based retrieval, analyzing medical im-
agery, or recognizing locations in photos. Much progress
over the last decade shows that supervised learning algo-
rithms coupled with effective image descriptors can yield
very good scene, object, and attribute predictions, e.g., [3,
13, 14]. The standard training process entails gathering
category-labeled image exemplars, essentially asking hu-
man annotators to say “what” is present (and possibly
“where” in the image it is). In this respect, current ap-
proaches give a rather restricted channel of input to the
human viewer, who undoubtedly has a much richer under-
standing than a simple label can convey.

Thus, our goal is to capture deeper cues from annotators.
We are particularly interested in complex visual recogni-
tion problems that require subjective judgment (e.g., saying
whether a face is attractive, rating an athletic performance)
or else lack clear-cut semantic boundaries (e.g., describing
a scene category, categorizing by approximate age). See

Is this anchor doing a Is this scene from a Is this woman
serious or light story? comedy or a drama? “hot or not?”

Are these TV characters Is this scene a Is this figure
friends or nemeses? lounge or a bedroom? skater’s form good?

Figure 1. Main Premise: Subjective or complex image classifica-
tion tasks such as those depicted above may require deeper insight
from human annotators than the usual category labels. We pro-
pose to ask for spatial or attribute-based rationales for the labels
chosen, and augment a large-margin classifier objective to exploit
both the labels and these explanations.

Figure 1. Can we really expect to learn such subtle con-
cepts purely by training SVMs with HOG descriptors and
category names? We instead propose to allow annotators
to give a rationale for the label they choose, and then di-
rectly use those explanations to strengthen a discriminative
classifier. Their insight about “why” should not only enable
more accurate models, but potentially also do so with less
total human effort, since we could amortize the time spent
analyzing the image to determine the label itself.

How can an annotator give an explanation? We propose
two modes. In the first, the annotators indicate which re-
gions of the image most influenced their label choice by
drawing polygons. That is, they highlight what seemed
most telling for the classification task at hand: “I can tell
it’s class X , mainly due to this region here.” In the second
mode, the annotators indicate which visual attributes were
deemed most influential, where an attribute refers to some
nameable property or part. For example, assuming we have
intermediate detectors for attributes like size, color, and spe-
cific textures, they can state: “It’s too round to be an X”, or
“She’s attractive because she’s fit.”

In either case, the rationale should help focus the classi-



fier on the low- or mid-level image features that can best
be used to discriminate between the desired image cate-
gories. To that end, we directly leverage an idea originally
developed by Zaidan and colleagues for document classifi-
cation [28]; it generates synthetic “contrast examples” that
lack the features in the rationales, and then adds constraints
to a classifier objective that require the contrast examples
to be considered “less positive” (or less negative) than the
original examples. In this way, the contrast examples can
refine the decision boundary in the target label space.

While recent work explores various issues in collecting
useful labeled datasets [1, 4, 12, 19, 21, 24], we are the
first to propose asking annotators for explanations of their
labels to directly improve visual category learning. With-
out injecting into a classifier knowledge of why a given la-
bel was chosen, traditional discriminative feature selection
techniques risk overfitting to inadequate or biased training
examples. In contrast, our strategy stands to benefit more
immediately from complex human insight (and thus, poten-
tially, with less total training data).

We demonstrate our approach with both scene and hu-
man attractiveness categorization tasks, and report results
on the 15 Scenes [10] and Public Figures Face [12] datasets,
as well as a new dataset of “Hot or Not” images. We show
that both proposed visual rationales can improve absolute
recognition accuracy. We also analyze their impact rela-
tive to several baselines, including foreground-segmented
images and a standard mutual information feature selection
approach. Overall, we find that human intuition can be cap-
tured in a new way with the proposed technique.

2. Related Work
Much work in visual recognition employs standard “im-

age + label” supervision, as exhibited by benchmark col-
lection efforts [4, 9, 19]. Annotations are generally uniform
across examples, and the goal is to obtain object names, and
optionally sub-image segmentations. Training discrimina-
tive classifiers with such data to distinguish basic categories
can be quite effective [3, 14]. In this work, however, we
tackle more subtle categorization tasks for which an annota-
tor’s rationales are expected to be valuable if not necessary.

Recent work offers ways to improve the efficiency of col-
lecting image annotations. Active learning methods predict
which images would be most useful to label next given the
current category models, and can reduce total annotation
time (e.g., [24],[20]). Image labeling games can entice peo-
ple to contribute useful data for free [26]. A substantial
shift in the scale of image datasets annotated today is in
part due to the emergence of online services like Mechani-
cal Turk; one can post jobs to get a large number of labels
more quickly [4, 21], and consider ways to manage qual-
ity control during collection [8, 21, 27]. Such ideas could
potentially be paired with ours to make more efficient use

of annotator time. However, in contrast to any previous at-
tempts to improve image annotation effectiveness, our ap-
proach requests the rationale behind a target label.

In addition to efficiency issues, researchers are explor-
ing the impact of requesting deeper, more complete anno-
tations. This includes gathering fully segmented [19], pose-
annotated [1], or “attribute”-labeled images [8, 12, 13, 17].
Attribute labels add cost, but can reveal useful mid-level
cues [12], or enable novel tasks like zero-shot learning [13].
Our work can be seen as another way to enrich annotations,
and we specifically make use of attributes within one form
of rationale. Compared to previous uses of attributes, our
idea is that human describable properties offer a new way
for the annotator to communicate to the learning algorithm,
and better teach it to recognize a complex visual category.

Some work in both language and vision studies how to
capture (or predict) those elements most “important” to a
human. The information can be explicitly gathered through
classic iterative relevance feedback (e.g., [2]). However,
more implicit measures are also possible, such as by learn-
ing what people mention first in a natural scene [11, 22],
or what they deem a foreground object [16]. Whereas
such methods use these cues to predict important regions
in novel images, our goal is to use what a human deems in-
fluential so as to better predict the category label for novel
images. Work in natural language processing (NLP) ex-
plores whether humans can pick out words relevant for a
given document category as a form of human feature selec-
tion [6, 18, 28]. In particular, the NLP method of [28] pro-
poses rationales to better predict sentiment in written movie
reviews, and inspires our approach; we adapt the authors’
basic idea to create two new forms of contrast examples for
the visual domain.

We use human attractiveness as one of our testbeds. Pre-
vious work shows that supervised learning can predict hu-
man judgements about facial beauty with about 0.6 corre-
lation [7], and a graphics technique synthesizes “more at-
tractive” faces [15]. Whereas the latter aims to create new
pictures, our method adapts descriptors in a visual feature
space and aims to better learn the categories.

3. Approach
The main idea is to gather visual rationales alongside tra-

ditional image labels, in order to use human insight more
fully to better train a discriminative classifier. We partic-
ularly target subjective, perceptual labeling tasks. We first
explain the notion of contrast examples as used in prior NLP
rationales work [28] (Section 3.1), and then define our two
proposed forms of visual rationales (Sections 3.2 and 3.3).

3.1. Rationales as Contrast Examples in an SVM

Zaidan et al. [28] propose a technique for document sen-
timent analysis based on a modified support vector machine



(SVM) objective using “rationales” that is also relevant for
our problem. We briefly review it here; see [28] for details.

Suppose we have a labeled set of n instances L =
{(x1, y1), . . . , (xn, yn)}, where each xi ∈ <d and yi ∈
{−1, 1}. To train a traditional SVM classifier, one seeks
a large-margin separating hyperplane for the positive and
negative exemplars that satisfies their label constraints, with
some slack variables to enable a soft margin. The intuition
behind rationales is to further require that a set of corre-
sponding synthetically generated contrast examples C =
{v1, . . . ,vn} are treated as less confidently labeled exam-
ples by that classifier.1

More specifically, for some positively-labeled training
example xi, one must use its human-provided rationale to
modify the example in some way to form vi ∈ <d, such
that vi resembles xi, but lacks the features most critical to
defining it as positive. Then, beyond the usual label con-
straints to satisfy each (xi, yi) ∈ L, the classifier objective
also includes constraints requiring that there be a secondary
margin µ between any pair (xi,vi) ∈ C. See Figure 2.

Formally, this leads to the following objective for hyper-
plane w:

minimize

(
1
2
||w||2 + C

∑
i

ξi + Cc
∑
i

γi

)
(1)

s.t. yiw
Txi ≥ 1− ξi; ∀i ∈ L (2)

yi(wTxi −wTvi) ≥ µ(1− γi); ∀i ∈ C (3)
ξi ≥ 0; γi ≥ 0, (4)

where (2) enforces the examples’ label constraints, and the
important addition (3) lists the contrast constraints. They
enforce a margin µ ≥ 0 separating the positive and “less
positive” (or negative and “less negative”) example pairs
(xi,vi) as well. Intuitively, larger values of µ increase the
secondary margin, giving greater influence to the rationales.
The slack variables ξi and γj allow soft margins, and the pa-
rameters C > 0 and Cc > 0 denote the associated penalty
costs. Setting Cc < C reflects the contrast constraints’ sec-
ondary importance. The bias terms are omitted above, but
accounted for by appending a 1-element to each training ex-
ample.

The optimization problem can be solved using standard
algorithms used to train SVMs, by rewriting (3) as ∀i ∈
C, yiwT x̂i ≥ 1− γi, where x̂i = xi−vi

µ . Though not done
in [28], it is also straightforward to kernelize this approach.

To use this classification approach, then, the key is to de-
fine (1) how an annotator should specify a visual rationale,
and (2) how to map their input into a contrast example for
the original example. We introduce two variants for these
definitions in the following.

1In reality, not every training example need have a contrast example
(i.e., we can have |C| < |L|), but we index them as such for notation
simplicity.

Positive
Positive contrast
Negative
Negative contrast

Figure 2. SVM with Contrast Examples In addition to maximiz-
ing the margin between true positive and negatives, the rationales
SVM objective [28] also requires a secondary margin µ between
the original examples and their synthetically generated contrast ex-
amples. This can usefully alter the ultimate hyperplane w.

3.2. Spatial Image Region Rationales

First we consider how contrast examples may be gener-
ated based on those spatial regions in an image an annotator
found most important to his/her label choice. Using an an-
notation interface with a polygon-drawing tool, we can ask
the annotator to mark regions of interest in the image. Then,
we will use those regions and their complement to generate
a contrast example. For example, in the scene categoriza-
tion task we explore in this work, an annotator might mark
certain telling objects that indicate a scene type (a sink in a
‘kitchen’ image, or a cash register in a ‘store’). Similarly,
for the human attractiveness task, s/he might mark facial
features or body parts that were found most appealing.

For this idea to work, we require an image representation
that consists of spatially localized components. A segment-
based or local feature-based representation is appropriate,
since we can directly map features located within the region
selected into a contrast example.

In particular, suppose for each training image xi we
have an associated set of mi local descriptors xi =
{(f i1, xi1, yi1), . . . , (f imi

, ximi
, yimi

)}, where each f ij de-
notes an appearance feature of some kind extracted at posi-
tion (xij , y

i
j) in image i. In our implementation, we use fea-

ture sets composed of local SIFT features, detailed below.
Now let ri = {(f ir1 , x

i
r1 , y

i
r1), . . . , (f

i
rk
, xirk

, yirk
)} denote

the subset of those points falling within the annotator-drawn
region of interest—the rationale. To generate a contrast ex-
ample, we simply take the complement of the rationale in
the image:

vi = xi \ ri. (5)

See Figure 3(a). Quite intuitively, the spatial rationale
makes a contrasting image example that lacks the visual
features the annotator found most important to deciding on
the class. However, rather than simply mask out its image
pixels directly (which would likely have unintended conse-
quences by altering the feature space artificially) we manip-
ulate the rationale in the intermediate local descriptor space.

We generate one contrast example per polygon set on an
image. More generally, one can introduce multiple ratio-



Attribute Rationale?
a1: pointed toes X
a2: on ground
a3: balanced
a4: falling
a5: knee angled X

Annotation task: Is the skater’s form good?

Original Rationale Contrast Original Rationale Contrast

(a) (b)

Figure 3. Rationale Modes We explore two modes of visual ratio-
nales. (a): The annotator draws polygons to indicate the region(s)
most influential in the class choice. In this mode, a contrast ex-
ample is formed by masking out the features falling inside a ra-
tionale polygon (bottom left). (b): The annotator comments on
attributes most influential in the class choice. In this mode, a con-
trast example is formed by weakening the predicted presence of
an attribute, which is a human-nameable visual property (bottom
right). Note that other attributes that are present need not play a
role in the rationale. In either case, constraints in the classifier
objective enforce that the contrast examples be considered “less
confident” exemplars for the class chosen.

nales per polygon annotation, sampling subsets of the en-
compassed points in order to isolate their impact.

We stress that for subjective image classification prob-
lems, such spatial image rationales will differ from tradi-
tional foreground segmentation. The annotator is not telling
us where the category is, but rather, what aspects most push
it into the selected category (‘kitchen’, ‘store’, ‘attractive’,
etc.). We confirm this important difference in our results.

3.3. Nameable Visual Attribute Rationales

As a second form of rationale, we allow the annotator
to comment on the nameable visual attributes that most
influenced his/her label choice. Suppose we have a set
of interpretable visual properties—such as “small”, “spot-
ted”, “dark”, “bushy eyebrows”, “smiling”—and that we
can train predictive models for them using external image
data (i.e., as in the attribute vocabularies used in previous
work to describe animals, faces, or scenes [8, 12, 13]). We
can use this vocabulary to allow an annotator to commu-
nicate about the image aspects that appear most important
in determining the category label. For example, in the hu-
man attractiveness task, s/he might comment that a person
is attractive in a certain photo because of her “happy” de-
meanor; or that they find a beach scene aesthetically pleas-
ing because it looks “calm”.

Let A = {a1, . . . ,aV } denote a vocabulary of V binary
visual attributes. For each visual attribute, we train a bi-
nary classifier to predict its presence in novel images, using

a separate set of training data from that involved in the tar-
get image categorization task. Then, when working with
attribute rationales, we represent each training image xi as
a V -dimensional descriptor, xi = [ai1, . . . , a

i
V ], where each

aij denotes the raw classifier output value for attribute j on
image i. We use a linear SVM per attribute.

Given a rationale ri = {air1 , . . . , a
i
rk
} for xi stating that

some k attributes present in the image were most influen-
tial to the label choice, we generate a contrast example that
reduces those k attribute values by a factor δ > 0 of the
standard deviation σaj

over all classifier outputs for aj :

vi = [ai1, . . . , a
i
r1 − δσar1

, . . . , airk
− δσark

, . . . , aiV ], (6)

See Figure 3(b). This rationale reflects that had the image
lacked the propert(ies) named as most relevant, it would
have been less likely to be categorized as it was.

In our results, we consider two forms of attribute-based
rationales, which differ in how the supervision is provided.
In the first “homogeneous” form, we allow a single anno-
tator to specify the attributes most relevant for the target
binary categorization task; the contrast examples are gener-
ated as described thus far, only we use the same influential
attribute dimensions for all training points. In the second
“individual” form, we obtain annotator responses on indi-
vidual images. The former is very inexpensive, and reason-
able when human insight is possible at the top-down class
level, while the latter should be more effective when the at-
tributes’ significance is more variable per example.

While in some cases attributes could be localized (like
our spatial rationales above), they may also refer to global
properties of the image that one could not possibly indicate
with a polygon. Hence, our two rationale modalities can
be complementary. Furthermore, note that just as the spa-
tial rationales are distinct from foreground extraction, the
attribute rationales are distinct from an attribute-level label-
ing. When asking the annotator for input, we request those
attributes they deemed most important—not a complete bi-
nary indicator over all V properties.

Finally, we note that the proposed attribute-based ratio-
nale exploits the descriptive nature of attributes to allow an
annotator to better intervene in training, which has not been
explored in any prior work, to our knowledge. Though a
simple implementation, it captures the power of attributes
in a novel way.

Given rationales of either form (at least on some por-
tion of the training images), we prepare the corresponding
contrast examples v1, . . . ,vn, and solve for the SVM hy-
perplane minimizing (1).

4. Data and Annotations
We explore the utility of our approach with three

datasets. Central to our approach are the human annota-
tors, who provide rationales that should give insight into



Scenes Hot or Not PubFig
MTurk Ours

# Annotations 8055 1845 426 247
# Unique Workers 545 104 2 8
Mean Annotations/Worker 15 18 213 31
Mean Seconds/Annotation 21.7 77.5 N/A 45

Table 1. Annotation Statistics - Summary from our rationale col-
lection on Scenes [10], Hot or Not (both MTurk annotations and
our own), and Public Figures [12].

their class decision for an image. We use Mechanical Turk
(MTurk) to gather most of our annotations in order to create
large datasets with a variety of annotation styles.

See Table 1 and Figure 4 for a summary of all datasets,
and our project page2 for screenshots of the interfaces we
built to collect the rationales.

4.1. Scene Categories

We first consider the 15 Scene Categories dataset [10],
which consists of 15 indoor and outdoor scene classes, with
200-400 images per class. We select this dataset since (1)
scene types often lack clear-cut semantic boundaries (e.g.,
“inside city” vs. “street scene”), requiring some thought by
an annotator, and (2) scenes are loose collections of isolated
objects with varying degrees of relevance, making them a
good testbed for spatial rationales.

When gathering the scene rationales on MTurk, we im-
posed only two requirements on the 545 annotators: that
they draw at least one polygon, and that they select one
scene category label per image. See Table 1. The majority
of rationales seemed intelligible (see Fig. 4, top left), some
were quite specific (top center), and a minority took some
artistic license (top right). Due to the subjective nature in-
herent in rationales, we did not remove any such cases. We
also kept any incorrect scene labels (relative to the dataset
ground truth), to maintain consistency with the rationales.
In fact, annotators specified the wrong label 21.5% of the
time, reinforcing our claim that scene categorization is not
clear-cut and warrants rationales.

4.2. Hot or Not

We introduce a new dataset using images from Hot or
Not3, a once popular website where users rate images of
one another for attractiveness on a 1-10 scale. We collected
1000 image/rating pairs of both men and women, requiring
each to have been rated at least 100 times (for a robust “hot-
ness” label). This dataset is an excellent testbed, since we
expect rationales are valuable to better learn such subjective
classification tasks.

We annotated a small subset of this data ourselves for
a preliminary experiment (>100 images in each of the
classes), and then crowdsourced a larger portion on MTurk

2http://vision.cs.utexas.edu/projects/rationales/
3http://www.hotornot.com/

Typical Tight “Artistic”
Scene Categories

Hot, Male Not, Male Hot, Female Not, Female
Hot or Not

Youth
Smiling
Straight Hair
Narrow Eyes

Youth
Black Hair
Goatee
Square Face
Shiny Skin
High Cheekbones

Public Figure Attribute Annotations

Figure 4. Sample Annotations - Top: For Scenes, annotators
were shown an image of a scene, and were asked to classify it
into one of the 15 categories and annotate it with one or more
spatial rationales indicating the part of the image that most influ-
enced their decision. Middle: For Hot or Not, annotators were
shown an image of a man or a woman rated in either the top or bot-
tom 25% of the websites’ user votes for hotness, and were asked
for a spatial rationale indicating what they found especially at-
tractive/unatttractive. Bottom: For Public Figs, annotators were
shown an image of a public figure and asked to select 3-7 attributes
most relevant to an attractive vs. unattractive decision.

(see Table 1, middle). We leverage the 100+ ratings from
hotornot.com as the image labels (a more robust estimate of
“ground truth” than a single person’s opinion), and then ask
the annotators to simply answer, “Why is this person attrac-
tive?” (or unattractive). In general, rationale quality seemed
quite high (see Figure 4, middle row).

4.3. Public Figures

Finally, we consider the Public Figures dataset [12],
which contains 58,797 images of 200 people, and 73 at-
tributes. We use it to test our attribute rationales for the at-
tractiveness test, and leverage the binary attribute classifier
outputs kindly shared by the authors to define a1, . . . ,aV .
Given that most people in the dataset are well-known public
figures, we simply divided them by identity into the attrac-
tive/unattractive categories ourselves. Of the 116 men, we
took 74 as attractive, 42 unattractive; of the 84 women, we
took 76 as attractive and just 8 as unattractive.

We used 51 (of the 73) attributes from [12] that we
expected were possibly relevant rationales for attractive-
ness, such as Smiling, Receding Hairline, and Pale Skin.



Kitchen Living Room Inside City Coast
Figure 5. Scene Categories Accuracy - Precision-recall for the four scene categories most improved by our approach. Key: Ours = our
approach; OO = Originals Only baseline; RO = Rationales Only baseline; MI = Mutual Information baseline.

For ease of explaining the slightly more complex and
time-consuming task, we asked friends unfamiliar with the
project to provide rationales (rather than MTurk; see Ta-
ble 1). We showed all annotators the 51 attribute names by
checkboxes, along with both the full image, and a clip of the
face of interest (see project page URL). They were asked
to select ∼ 3 − 7 attributes most relevant to the given at-
tractiveness label. From that data, we selected all attributes
referenced at least 20 times to include in all experiments.

5. Results
We now present results to demonstrate that annotator ra-

tionales can be of value to build classifiers for complex vi-
sual tasks. Throughout, all methods use the same base im-
age features and linear SVMs, and we set parametersC, Cc,
and µ on validation data.

5.1. Spatial Rationales

We first evaluate the effectiveness of spatial rationales
(from Section 3.2), using SIFT features with bag-of-words
as the image descriptors xi, and a vocabulary of 500 visual
words (we use DoG on Scenes, and dense sampling on Hot
or Not). We compare to three baselines:

• Originals Only: standard image classification, no ra-
tionales.

• Rationales Only: uses only the spatial region given as
a rationale to build the bag-of-words (BoW).

• Mutual Information: uses feature selection to auto-
matically select the k = 100 most discriminative vi-
sual words to use as a refined bag-of-words, following
the model in [5].

Because these baselines use standard BoW descriptors and
SVMs as in many state-of-the-art systems, they can be con-
sidered strong baselines.

Scene Categories We begin evaluation with the Scene
Categories. We pose 15 one-vs-all (OVA) classification
tasks. We perform 100 trial runs per class, each time select-
ing a random split of 375 train/1500 test images. We present
per-scene results since the rationales use a binary classifier
objective, making this the most direct study of their value;
it also allows us to understand the impact on different scene
types separately.

Originals Rationales Mutual
Class Name Ours Only Only Information

Kitchen 0.1395 0.1196 0.1277 0.1202
Living Room 0.1238 0.1142 0.1131 0.1159

Inside City 0.1487 0.1299 0.1394 0.1245
Coast 0.4513 0.4243 0.4205 0.4129

Highway 0.2379 0.2240 0.2221 0.2112
Bedroom 0.3167 0.3011 0.2611 0.2927

Street 0.0790 0.0778 0.0766 0.0775
Open Country 0.0950 0.0926 0.0946 0.0941

Mountain 0.1158 0.1154 0.1151 0.1154
Office 0.1052 0.1051 0.1051 0.1048

Tall Building 0.0689 0.0688 0.0689 0.0686
Store 0.0867 0.0866 0.0857 0.0866

Forest 0.4006 0.3956 0.4004 0.3897
Suburb 0.0735 0.0735 0.0737 0.0733

Industrial 0.1046 0.1056 0.0911 0.0981
Table 2. Scene Categories Accuracy - Mean average precision for
rationales (Ours) and 3 baselines. Our approach is most accurate
for 13/15 classes. Best overall is in bold, best baseline is italicized.

Table 2 summarizes the results. Our method improves
the MAP over the best baseline in 13 of the 15 categories.
The gain is statistically significant for 11 out of 15 classes
(α = 0.1). Figure 5 shows precision-recall curves for the
4 categories most improved by our approach. The gains
on Living Room and Inside City are intuitive, since these
are scenes particularly defined by loose configurations of
rationale-friendly objects. Gains on Coast are more modest;
upon inspection, we found that rationales for this class often
encompassed most of the image, hence our similar accuracy
to Originals and Rationales Only.

The fact that rationales outperform the Originals baseline
shows the clear value in asking annotators for spatial ex-
planations. Moreover, outperforming the Rationales Only
baseline shows that a rationale is not equivalent to fore-
ground segmentation; we do not see as strong of results by
simply cropping out the parts of the image that do not lie
in a rationale polygon. Finally, our advantage over Mutual
Information shows that human insight can be competitive
and even more useful than an automated feature selection
technique, if utilized appropriately.

Hot or Not Next we evaluate the human attractiveness
classification task on the Hot or Not data. We densely sam-
ple SIFT at every 2 pixels at a single scale of 8 pixels, using
the VLFeat library [23], to ensure good coverage in all ar-



Male Female
Training Examples per Class N = 25 100 25 100
Ours (Our Annotations) 55.40% 60.01% 53.13% 57.07%
Ours (MTurk Annotations) 53.73% 54.92% 53.83% 56.57%
Originals Only 52.64% 54.86% 54.02% 55.99%
Rationales Only 51.07% 54.01% 50.06% 50.00%
Mutual Information 52.51% 54.50% 52.58% 53.94%
Faces as Rationales 52.17% 53.40% 53.39% 56.11%

Table 3. Hot or Not Accuracy - Spatial rationales on the Hot or
Not dataset for 2 training set sizes, compared to several baselines.

eas of the image, including the smoother face regions. We
build separate classifiers per gender. Since the raw data has
real-valued rankings of hotness, we map them to binary la-
bels by taking the top 25% of ratings as Hot and the bottom
25% as Not. We show results for training sets of size 25 and
100 per class, randomly selected across 100 trials.

We compare results to the 3 baselines outlined above,
plus a new face-specific baseline that uses Viola-Jones [25]
to detect the face in the image, and only takes those features.
We call this the Faces as Rationales baseline, since it will
show how well one could do by simply focusing on the face
a priori.

Table 3 shows the results. Our rationales clearly outper-
form the several baselines for Males. The improvement is
smaller when we use the MTurk rationales from 104 work-
ers. While we did not find an obvious difference in quality
of the rationales, a likely explanation is that the particular
tastes of the single annotator providing “our annotations”
were more consistent and thus more accurately learnable.

The Males result also illustrates the potential for ratio-
nales to reduce total human effort. With just 25 training ex-
amples per class, our approach outperforms the traditional
supervised approach trained with 100 examples per class.
Although rationales do cost more time to obtain, we esti-
mate it adds less than a factor of four in annotator time.
Thus, beating the baseline with just a quarter of the training
data (25 vs. 100) is a win for total annotation effort.

For Females, improvements are much less significant,
very close to the Originals baseline; the Face Rationale
baseline suggests that the female ratings were largely de-
pendent on facial appearance. We leave as future work to
explore even richer low-level features, and to exploit the
face detector for our own method’s advantage.

5.2. Attribute Rationales

Finally, we demonstrate our second form of visual ratio-
nales, using attributes for the human attractiveness classi-
fication task. We use the Public Figures dataset instead of
Hot or Not for the attributes rationales, since we can lever-
age the collection effort of Kumar et al. [12], who publicly
share the classifier outputs of their attribute models. (Refer
back to Secs. 3.3 and 4.3 for algorithm and data details.)

We compare our attribute rationales to the Originals

Homogeneous Individual
Ours Originals Ours Originals

Male 68.14% 64.60% 62.35% 59.02%
Female 55.65% 51.74% 51.86% 52.36%

Table 4. Attribute Rationales Performance - Average accuracy
across 100 trials for homogeneous and individual attribute ratio-
nales. Our homogeneous rationales attribute approach performs
significantly better (α = 0.0001 in a one-sided t-test) than the
baseline for both Males and Females. Our individual rationales at-
tribute approach performs significantly better than the baseline for
Males, but the data is inconclusive for Females (α = 0.001).

Only baseline, which learns an SVM attractiveness classi-
fier using the same original attribute feature space. Note,
this setting does not lend itself to a parallel Rationales Only
baseline, as we showed above.

Homogeneous Rationales We first test the homogeneous
attribute rationales, where rationales are propagated down
for the entire category based on human knowledge. For this
test, we selected attributes Chubby, Big Nose, and Senior
as indicative of the unattractive category, and left Mouth
Closed, Square Face, Round Face, and No Beard as “neu-
tral” in the contrast examples.4 We use a training set of 15
images per class, and 500 test images per class. We split
the train/test sets so as to ensure that the same person (e.g.,
Meg Ryan) never appears in both the training and test set,
and run 100 randomly selected splits.

Table 4, left, shows the results. For both men and
women, our approach performs statistically significantly
better than the baseline. With just 7 attributes and 15 train-
ing examples per class, these results show that homoge-
neous rationales can give useful insight to the classifier. The
minimal training cost entailed by homogeneous attribute-
based rationales is also a clear strength.

Individual Rationales Next we make use of the ratio-
nales collected on the same data from annotators on indi-
vidual images. We use a training set of 15 examples per
class, and 500 test examples per class, and perform 50 trials
over different splits (again ensuring no single person is in
both the training and test set on a given trial), setting δ = 2
for Males and δ = 1 for Females (Equation 6).

Table 4, right, shows the results. For Males, our results
show a statistically significant performance increase over
the baseline. For Females, however, they are comparable.
This may be due to several factors, including the the “anno-
tatability” of these attributes (since we wanted to use exist-
ing attribute data, the attribute vocabulary is not necessarily
the most amenable to attractiveness explanations), and con-
sistency across annotators. In addition, overall performance
was likely negatively impacted by the small training set size

4The authors cringe at putting such offensive judgments in this paper;
this classification task is not very PC.



and, in the case of the women, the desperate brutality with
which the authors deemed unattractive a few of the quite
attractive women in this dataset, due to the need for some
unattractive Female examples.

Overall, these attractiveness results both show the real
difficulty of learning such a complex visual property, as well
as the promise of allowing human insight to be more fully
transferred to the learning algorithms. It is natural to imag-
ine further applications of our approach in which spatial and
attribute rationales could be combined to strengthen classi-
fication performance.

6. Conclusions
We presented a new way to look at supervised learn-

ing of image classes: by using not only the “what” of an
annotator’s classification, but also the “why”. Our results
from thorough experiments and multiple datasets are very
encouraging. They show that asking an annotator to not
only label an image with its class but also with the regions
or attributes that were most influential in his or her class
choice can be useful in multiple domains, including recog-
nizing scene categories and classifying images of humans
as attractive or unattractive.

The results indicate some potential for rationales to re-
duce total annotator effort; once the annotator decides the
subjective class label, s/he has already invested some time in
the task, and so further requesting a rationale amortizes that
analysis. Nonetheless, we stress that rationales are not only
useful for scenarios with small training sets. They give a
classifier useful knowledge about the human’s opinion that
cannot be replicated simply with more labels.

This general strategy for image classification may be
useful in many other domains as well, especially for recog-
nition tasks that require perceptual or subjective judgment.
In all, this study suggests new possibilities to allow systems
to communicate more fully with human annotators, for bet-
ter ultimate performance.
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