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1 Sanity Check Baseline Results: Averaging Images per
Category

As described in the text of the main paper, this baseline is a sanity check to assure
the dif�culty of generating prototypical shapes. We manually partition the images into
the “ideal” clusters, so that each cluster has 100% purity, and then simply average
the aligned edge images, using the con�dence weights given by the Pb detector [1].
The sanity check baseline helps to indicate the contribution made by our fragment
weighting and prototype formation.

Fig. 1 (a-c) show the prototypical shapes formed by the baseline on the Caltech
images, ETHZ bounding box regions, and ETHZ expanded regions, respectively. For
the Caltech images, the baseline clearly cannot discover the shape agreement, even
though the input clusters were perfect. The baseline does pretty well to discover shape
on the ETHZ bounding box regions, which is expected, since those regions are scale-
normalized and aligned. The baseline performs worse on the ETHZ expanded regions
due to clutter in the images; it discovers shapes with some accuracy for only a couple
of categories (Applelogos and Bottles). (To compare against our method's prototypical
shapes, see Fig. 6 (b) (Caltech) and Fig. 7 (b,e) (ETHZ bounding box and expanded,
respectively) in the main paper.)

These results con�rm that even with perfect clusters, simply stacking the edgemaps
will not produce accurate shape models. Our method clearly outperforms this baseline
for most of the generated shapes (a few are comparable), evenwithout the advantage
of starting with perfect clusters.

2 Description of LabelMe Test Set

To form the LabelMe test set used in Section 4.3 of the main paper, we downloaded
images for each of the Caltech categories with the requirements that (1) there be at least
one instance of an annotated object, and (2) there be at least10K pixels on the object of

1



(a) Caltech sanity check baseline proto-
type shapes

(b) ETHZ (bbox) sanity check
baseline prototype shapes

(c) ETHZ (expanded) san-
ity check baseline prototype
shapes

Figure 1: Prototypical shapes found by the sanity check baseline on the (a) Caltech
images, (b) ETHZ bounding box regions, and (c) ETHZ expandedregions. The right
images are thresholded images of the left. (Best viewed in color.)

interest. The second requirement is to ensure that edges will be detected on the object
of interest. To this end, we created a testset for the Faces (F), Airplanes (A), Cars Rear
(C), and Motorbikes (M) categories, each having 15 images. (LabelMe's images for
the Watches and Ketches categories did not meet the requirements.)

We perform object detection by matching our prototypical shapes to the test images
using a simple modi�ed chamfer distance: we give a penalty toeach edgel in the shape
mask that is proportional to their weights (vote counts). For this detection task, we
are given an image containing an instance of the object, and we have to determine its
precise location. To account for scale differences betweenthe models and objects in
test images, we search at multiple scales, scaling each testimage from half to twice its
original size, in increments of 0.1.

We search for a single instance of the object by choosing the region that corre-
sponds to the lowest symmetric chamfer distance. Fig. 2 and Fig. 3 show correct and
incorrect detection examples, respectively. (The main paper summarizes the quantita-
tive results.)

Our discovered prototypical shapes lead to some accurate detections even in com-
plex images taken from another dataset. The incorrect detections are mainly due to the
limitations of the chamfer matching: it has trouble producing accurate matches when
the image has large amounts of clutter, when the object of interest is rotated, and/or
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when there are not enough edges detected on the object of interest (due to shadows or
bright illumination).

3 Complexity Analysis

We analyze the computational complexity of our method's matching algorithm. LetP
andE be the maximum number of patch descriptors and extracted edge fragments in
each image, respectively. LetS be the spatial extent (height and width) of the local
region in which each fragment in one image can shift to �nd itsbest corresponding
edge fragment in another.

ComputingDpatch (X; Y ) between feature setsX andY requiresO(P2) L 2 dis-
tance computations. To ef�ciently compute the shape distances, we pre-compute the
distance transform and argument distance transform (both of which can be computed
in linear time) on the edgemaps of each image. Computing the coarse shape simi-
larity, D scd (X; Y ), requiresO(P2) dot-products between matching features and the
shifted distance-transformed image; when the regions overlap, we can memoize dis-
tances, which for extremely dense patches reduces the cost to O(P). Once the best-
matching pair of regions inX andY are found, computing the �ne shape similarity,
D shape (X; Y ), requiresO(P ES2) dot-products between each edge fragment and the
distance-transformed image.
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Faces Airplanes Motorbikes Cars Rear

Figure 2: Examples of correct detections. These LabelMe images are scanned with
the shape models discovered by our method from the Caltech images; the position and
scale yielding the minimal chamfer distance to our shapes isshown with a bounding
box.

Faces Airplanes Motorbikes Cars Rear

Figure 3: Examples of incorrect detections. These images have large amounts of clut-
ter, object rotation, and/or not enough edges detected on the object that lead to inaccu-
rate chamfer matching.
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