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1 Sanity Check Baseline Results: Averaging Images per
Category

As described in the text of the main paper, this baseline iangtys check to assure
the dif culty of generating prototypical shapes. We matyahrtition the images into
the “ideal” clusters, so that each cluster has 100% puritg then simply average
the aligned edge images, using the con dence weights giyethé Pb detector [1].
The sanity check baseline helps to indicate the contributimde by our fragment
weighting and prototype formation.

Fig. 1 (a-c) show the prototypical shapes formed by the baseln the Caltech
images, ETHZ bounding box regions, and ETHZ expanded regi@spectively. For
the Caltech images, the baseline clearly cannot discoeeshlape agreement, even
though the input clusters were perfect. The baseline dasy/prell to discover shape
on the ETHZ bounding box regions, which is expected, sinosdhegions are scale-
normalized and aligned. The baseline performs worse on TthtZEexpanded regions
due to clutter in the images; it discovers shapes with soroeracy for only a couple
of categories (Applelogos and Bottles). (To compare againsmethod's prototypical
shapes, see Fig. 6 (b) (Caltech) and Fig. 7 (b,e) (ETHZ bagnolbx and expanded,
respectively) in the main paper.)

These results con rm that even with perfect clusters, sinsphcking the edgemaps
will not produce accurate shape models. Our method cleaitfyssforms this baseline
for most of the generated shapes (a few are comparable) vétleout the advantage
of starting with perfect clusters.

2 Description of LabelMe Test Set

To form the LabelMe test set used in Section 4.3 of the mairepape downloaded
images for each of the Caltech categories with the requinéstieat (1) there be at least
one instance of an annotated object, and (2) there be atlledgiixels on the object of
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Figure 1: Prototypical shapes found by the sanity checklio@sen the (a) Caltech
images, (b) ETHZ bounding box regions, and (¢) ETHZ expandgobns. The right
images are thresholded images of the ldBedt viewed in color)

interest. The second requirement is to ensure that edgesendletected on the object
of interest. To this end, we created a testset for the FadeAifplanes (A), Cars Rear
(C), and Motorbikes (M) categories, each having 15 imagkabéIMe's images for
the Watches and Ketches categories did not meet the reqeriteh

We perform object detection by matching our prototypicalgs to the test images
using a simple modi ed chamfer distance: we give a penalgach edgel in the shape
mask that is proportional to their weights (vote counts)r this detection task, we
are given an image containing an instance of the object, antdave to determine its
precise location. To account for scale differences betvieermodels and objects in
test images, we search at multiple scales, scaling eacimage from half to twice its
original size, in increments of 0.1.

We search for a single instance of the object by choosingeg®n that corre-
sponds to the lowest symmetric chamfer distance. Fig. 2 amd3Fshow correct and
incorrect detection examples, respectively. (The mairepapmmarizes the quantita-
tive results.)

Our discovered prototypical shapes lead to some accurigetims even in com-
plex images taken from another dataset. The incorrect tietscare mainly due to the
limitations of the chamfer matching: it has trouble prodigcaccurate matches when
the image has large amounts of clutter, when the object efest is rotated, and/or



when there are not enough edges detected on the object ifdh{due to shadows or
bright illumination).

3 Complexity Analysis

We analyze the computational complexity of our method'sahisty algorithm. LeP
andE be the maximum number of patch descriptors and extracted dgments in
each image, respectively. L8tbe the spatial extent (height and width) of the local
region in which each fragment in one image can shift to ndhést corresponding
edge fragment in another.

ComputingD patch (X;Y') between feature se¥ andY requiresO(P?) L, dis-
tance computations. To ef ciently compute the shape distanwe pre-compute the
distance transform and argument distance transform (Hotthich can be computed
in linear time) on the edgemaps of each image. Computing tlaese shape simi-
larity, Dscq(X; Y ), requiresO(P?) dot-products between matching features and the
shifted distance-transformed image; when the regionslagyewe can memoize dis-
tances, which for extremely dense patches reduces theac@gft). Once the best-
matching pair of regions iX andY are found, computing the ne shape similarity,
D shape (X; Y'), requiresO(P ES?) dot-products between each edge fragment and the
distance-transformed image.

References

[1] D. Martin, C. Fowlkes, and J. Malik. Learning to Detectural Image Boundaries
Using Local Brightness, Color, and Texture Cud$2AMI, 26(5):530-549, May
2004.



Faces Airplanes Motorbikes Cars Rear

Figure 2: Examples of correct detections. These LabelM@é@sare scanned with
the shape models discovered by our method from the Calteapes) the position and
scale yielding the minimal chamfer distance to our shapsbidsvn with a bounding
box.
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Figure 3: Examples of incorrect detections. These images laage amounts of clut-
ter, object rotation, and/or not enough edges detectedeoolifect that lead to inaccu-
rate chamfer matching.



