The language of visual attributes

Kristen Grauman Facebook AI Research University of Texas at Austin

Value of attributes

[Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al. 2009, Lampert et al. 2009, Wang & Mori 2010, Berg et al. 2010, Parikh & Grauman 2011, Branson et al. 2010, Kovashka et al. 2012, Kulkarni et al. 2011, Wang et al. 2016, Liu et al. 2015, Singh et al. 2016, ...]

The language of visual attributes

Attributes as operators

Attributes:adjectives that *modify* objects:nouns

• Attributes for comparisons

Relative differences that people first describe

Attributes for visual styles

Semantic topic models for data-driven styles

Attribute and Object Representations

Yet status quo treats attributes and objects the same...

As latent vector encodings

e.g., Wang CVPR16, Liu CVPR15, Singh ECCV16, Lu CVPR17, Su ECCV16,...

Attribute vs. Object Representations

object

Prototypical "car" instance

attribute

Prototypical "sliced" instance

Challenges for the status quo approach

Has to capture interactions with every object

Challenges for the status quo approach

VS.

Old car

Has to capture attributes' distinct manifestations

Our idea – Attributes as operators

Our idea – Attributes as operators

Objects are **vectors** Attributes are **operators**

Composition is: an **attribute operator** transforming an **object vector**

Linguistically inspired regularizers

Antonym-consistency:

"Unripe should **undo** the effect of ripe"

Linguistically inspired regularizers

Attribute commutation: Attribute effects should stack.

 $Object\ vectors$

Evaluation

UT-Zappos 50k (Yu & Grauman, CVPR 14)

16 attributes x 12 objects

MIT States (Isola et al., CVPR 15)

115 attributes x 245 objects

Evaluating our composition model

Evaluating our composition model

Results – Attribute+object composition recognition

		closed	open	h-mean
	CHANCE	0.1	0.05	0.1
MIT States: 6% increase in	VISPROD(SVM)	11.1	2.4	3.9
open world (3% h-mean)	VISPROD(NN)	13.9	2.8	4.7
	ANALOGOUSATTR#	1.4	0.2	0.4
	REDWINE *	12.5	3.1	5.0
UT-Zap: 14% increase in	LABELEMBED	13.4	3.3	5.3
open world (12% h-mean)	LABELEMBED+	14.8	5.7	8.2
	OURS	12.0	11.4	11.7

*Misra et al. CVPR 2017 #Chen & Grauman CVPR 2014

[Nagarajan & Grauman, ECCV 2018]

MIT-States

Results - Retrieving unseen (unseen) compositions

Rusty Lock —

query

Nearest Images in ImageNet

The language of visual attributes

Attributes as operators

Attributes:adjectives that *modify* objects:nouns

• Attributes for comparisons

Relative differences that people first describe

Attributes for visual styles

Semantic topic models for data-driven styles

Relative attributes

Parikh & Grauman, ICCV 2011 Singh & Lee, ECCV 2016

Relative attributes

Parikh & Grauman, ICCV 2011 Singh & Lee, ECCV 2016

Relative attributes

Compare images by an attribute's "strength"

[Parikh & Grauman, ICCV 2011]

Challenge #1: fine-grained comparisons

Which is more sporty?

Sparsity of supervision problem:

- 1. Label availability: lots of possible pairs.
- 2. Image availability: subtleties hard to curate.

Idea: Semantic jitter

Overcome sparsity of available fine-grained image pairs with attribute-conditioned image generation

VS.

Our idea: Semantic jitter

Status quo: Low-level jitter

Yu & Grauman, ICCV 2017

Semantic jitter for attribute learning

Train rankers with both real and synthetic image pairs, test on real fine-grained pairs.

Ranking functions trained with deep spatial transformer ranking networks [Singh & Lee 2016] or Local RankSVM [Yu & Grauman 2014]

Yu & Grauman, ICCV 2017

Challenge #2: Which attributes matter?

Left shoe is _____ than right shoe:

Less colorful Less comfortable More rugged More shiny Less feminine More stylish More formal

Idea: Prominent relative attributes

Infer which comparisons are perceptually salient

Left shoe is _____ than right shoe:

Less colorful Less comfortable More rugged More shiny Less feminine More stylish More formal

More formal More shiny Less comfortable

Less feminine Less colorful More rugged More stylish

Chen & Grauman, CVPR 2018

Approach: What causes prominence?

- Large difference in attribute strength:
- Unusual and uncommon attribute occurrences:
- Absence of other noticeable differences:

Prominent Difference:

Colorful

Forehead

Dark Hair

In general: Interactions between all the relative attributes in an image pair cause prominent differences.

Chen & Grauman, CVPR 2018

Approach: Predicting prominent differences

Chen & Grauman, CVPR 2018

Results: Prominent differences

(c) tall (<), colorful, sporty

(f) feminine (>), comfortable, shiny

(a) colorful (>), sporty, comfortable

(d) shiny (>),

feminine, colorful

(j) masculine (>), smiling, visible teeth

(k) bald head (<), dark hair, visible teeth

(1) dark hair (<), mouth open, smiling

(Top 3 prominent differences for each pair)

Results: Prominent differences

Prominent differences: impact on visual search

Leverage prominence to better focus search results

Chen & Grauman, CVPR 2018

Prominent differences: impact on visual search

Leverage prominence to better focus search results

Chen & Grauman, CVPR 2018

From items to styles

The language of visual attributes

Attributes as operators

Attributes:adjectives that *modify* objects:nouns

• Attributes for comparisons

Relative differences that people first describe

Attributes for visual styles

Semantic topic models for data-driven styles

How to represent visual style?

Challenges:

- Same "look" manifests in different garments
- Emerges organically and evolves over time
- Soft boundaries

Idea: Discovering visual styles

Unsupervised learning of a style-coherent embedding with a **polylingual topic model**

outer layer

outer_color_orange outer_color_white outer_pattern_printed outer_decoration_button outer_sleeve_long outer_length_short outer_front_open

> upper shirt_color_white shirt_pattern_plain shirt_sleeve_short

An **outfit** is a mixture of (latent) **styles**. A **style** is a distribution over **attributes**.

Mimno et al. "Polylingual topic models." EMNLP 2009.

Hsiao & Grauman, ICCV 2017

Example discovered styles (dresses)

Styles we automatically discover in the Amazon dataset [McAuley et al. 2015]

Example discovered styles (full outfit)

Styles automatically discovered in the HipsterWars dataset [Kiapour et al]

Mixing styles

Our embedding naturally facilitates browsing for mixes of user-selected styles

Hsiao & Grauman, ICCV 2017

Creating a "capsule" wardrobe

Goal: Select minimal set of pieces that mix and match well to create many viable outfits

Hsiao & Grauman, CVPR 2018

Creating a "capsule" wardrobe

Discover user's style preferences from album

Hsiao & Grauman, CVPR 2018

Visual trend forecasting

We predict the future popularity of each style

Al-Halah et al., ICCV 2017

Amazon dataset [McAuley et al. SIGIR 2015]

Visual trend forecasting

What kind of fabric, texture, color will be popular next year?

(a) Texture

(b) Shape

VizWiz: Answer blind people's visual questions [Gurari et al. CVPR 2018] Spotlight/Poster Wednesday

Is my monitor on?

Hi there can you please tell me what flavor this is?

- Goal-oriented visual questions
- Conversational
 language
- Assistive technology

Summary: the language of visual attributes

New ideas for attributes as operators, comparisons, style basis Applications for visual search and fashion image analysis

Papers/code

- Attributes as Operators. T. Nagarajan and K. Grauman. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, Sept 2018. [pdf] [supp] [code]
- Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images. A. Yu and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017. [pdf] [supp] [poster]
- Compare and Contrast: Learning Prominent Visual Differences. S. Chen and K. Grauman. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018. [pdf] [supp] [project page]
- Fashion Forward: Forecasting Visual Style in Fashion. Z. Al-Halah, R. Stiefelhagen, and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017. [pdf] [supp] [project page]
- Learning the Latent "Look": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images. W-L. Hsiao and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017. [pdf] [supp] [project page/code]
- Creating Capsule Wardrobes from Fashion Images. W-L. Hsiao and K. Grauman. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018. (Spotlight) [pdf]
- VizWiz Grand Challenge: Answering Visual Questions from Blind People. D. Gurari, Q. Li, A. Stangl, A. Guo, C. Lin, K. Grauman, J. Luo, and J. Bigham. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018. (Spotlight) [pdf]