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Announcements

» A1 due this Friday

Last time

Texture is a useful property that is often
indicative of materials, appearance cues

Texture representations attempt to summarize
repeating patterns of local structure

Filter banks useful to measure redundant
variety of structures in local neighborhood

— Feature spaces can be multi-dimensional

Neighborhood statistics can be exploited to
“sample” or synthesize new texture regions

— Example-based technique

Last time

[r1,r2, ..., r38]

We can form a
feature vector
from the list of
responses at

d
D(a,b) =, > (a,-b,)* Euclidean distance (L)

Texture synthesis: intuition

Before, we inserted the next word based on
existing nearby words...

Now we want to insert pixel intensities based
on existing nearby pixel values.

Place we want to
insert next

eyl
Sample of the ExTuTé
(“corpus”)
Distribution of a value of a pixel is conditioned
on its neighbors alone.

Synthesizing One Pixel

T

input image

synthesized image
« Whatis P(x|neighborhood of pixels around x) ?
< Find all the windows in the image that match the neighborhood
« To synthesize x
— pick one matching window at random
— assign x to be the center pixel of that window

« An exact neighbourhood match might not be present, so find the
best matches using SSD error and randomly choose between them,
preferring better matches with higher probability

Slide from Alyosha Efros, ICCV 1999
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How to evaluate texture
generation?

Neighborhood Window

Quantitative Evaluation of Near Regular Texture Synthesis Algorithms

Wen-Chieh Lin" James Hays™ Chenyu Wu** Vivek Kwatra™* Yanxi Liu™*
* College of Computer Science, National Chiao-Tung University
** School of Computer Science, Carnegie Mellon University
“** Department of Computer Science, University of North Carolina at Chapel Hill

Figure 2. A near-regular texture overlaid with its lattice(left) and
its geometrically regular counterpart(right), where L and L, are
the underlyir ices, and £ and £ are the generating vectors of
the regular lattice L.

igure 3. A sample set of near-regular textures used in this study

Slide from Alyosha Efros, ICCV 1999

Image Quilting [Efros & Freeman 2001]

non-parametric
sampling
= % L]
__i
Input image

» The Efros & Leung algorithm
— Simple
— Surprisingly good results
— Synthesis is easier than analysis!
—...but very slow

S):lnth:e:si:zin_p,::a block
» Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
¢ Exactly the same but now we want P(B|N(B))

¢ Much faster: synthesize all pixels in a block at once

Slide from Alyosha Efros, ICCV 1999

block Minimal error boundary

Input texture overlapping blocks vertical boundary
B1 B2 B1 B2 B1 || B2
Random placement Neighboring blocks Minimal error F Fl
of blocks constrained by overlap boundary cut

overlap error min. error boundary
Slide from Alzosha Efros
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Texture Transfer

» Take the texture from one
object and “paint” it onto
another object

— This requires separating
texture and shape

— That’'s HARD, but we can
cheat

— Assume we can capture shape
by boundary and rough
shading

* Then, just add another constraint when sampling:
similarity to underlying image at that spot

Slide credit: Freeman & Efros

parmesan

(Manual) texture synthesis
in the media

LIVE &NF\S SPECIAL REPORT
TRUMP HEALTH CARE PLAN PASSED
HOUSE AND MOVES ON TO SENATE ~ “NEWS

Video textures

Arno Schodl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video
textures. Proceedings of SIGGRAPH 2000, pages 489-498, July 2000.
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Style transfer

https://www.youtube.com/watch?v=Khuj4ASIdmU

Today

» Optical flow: estimating motion in video
* Background subtraction

Video

» Avideo is a sequence of frames captured
over time

* Now our image data is a function of space
(x, y) and time (t)

L I(x,y.0)

N

Uses of motion

» Estimating 3D structure

+ Segmenting objects based on motion cues

* Learning dynamical models

* Recognizing events and activities

* Improving video quality (motion stabilization)

Motion field

» The motion field is the projection of the 3D
scene motion into the image

Motion parallax

http://psych.hanover.edu/KRANTZ/MotionParall

ax/MotionParallax.html
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Motion field + camera motion

Length of flow
vectors inversely
proportional to

{| depth Z of 3d
Sg\ point

Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed
optical flow field

points closer to the camera move more

Figure from Michael Black, Ph.D. Thesis quickly across the image plane

Motion field + camera motion

Motion estimation techniques

» Direct methods
« Directly recover image motion at each pixel from spatio-temporal
image brightness variations
« Dense motion fields, but sensitive to appearance variations
« Suitable for video and when image motion is small

» Feature-based methods
« Extract visual features (corners, textured areas) and track them
over multiple frames
« Sparse motion fields, but more robust tracking
« Suitable when image motion is large (10s of pixels)
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Zoom out Zoom in Pan right to left
Optical flow

+ Definition: optical flow is the apparent motion
of brightness patterns in the image

+ Ideally, optical flow would be the same as the
motion field

* Have to be careful: apparent motion can be
caused by lighting changes without any
actual motion

Apparent motion != motion field

Vg
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Figure from Horn book

Problem definition: optical flow

e N ° .
- 1 ° .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?
« Solve pixel correspondence problem

— given a pixel in H, look folnearby]pixels of the[same colo} in |
Key assumptions
« color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy
+ small motion: points do not move very far

This is called the optical flow problem
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Color/brightness constancy

Figure 1.5: Data conservation assumption. The highlighted region in the right image looks
roughly the same as the region in the left image, despite the fact that it has moved.

Figure by Michael Black

2/5/2018

Optical flow constraints

(zy)
\glsplacement = (u,v)
(z £ u,y + v)
H(z,y) I(z,y)

Let’s look at these constraints more closely
« brightness constancy: Q: what’s the equation?
H(x,y)=1(x+u,y+v)
« small motion:
I(z+u, y+v) = I(x, g/)+%'lm+%'tr+higher order terms
~ I(2. oI oI
~ (2, y) + gyu+ i

Optical flow equation shorthand: I

— al
— Oz

Combining these two equations
0=1I(z+u,y+v)— H(z,y)
~ I(a,y) + Lou+ Iyv — H(,y)
~ (I(z,y) — H(z,y)) + Lou+ Iyv
~ I+ Lu+ Iy
~I; +VI-[uv]

Optical flow equation

0=1I;+VI-[u]

Q: how many unknowns and equations per pixel?

The aperture problem

Perceived motion

The aperture problem

VI-@',py')=0

Actual motion
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The barber pole illusion
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Barber's pole Mation field Optical flow

http://en.wikipedia.org/wiki/Barberpole illusion
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Solving the aperture problem

* How to get more equations for a pixel?

+ Spatial coherence constraint: pretend the pixel's
neighbors have the same (u,v)

Surface

Image Plane

Figure 1.7: Spatial coherence assumption. Neighboring points in the image are assumed to
belong to the same surface in the scene.

Figure by Michael Black

Solving the aperture problem

» How to get more equations for a pixel?
« Spatial coherence constraint: pretend the pixel's
neighbors have the same (u,v)
« If we use a 5x5 window, that gives us 25 equations per pixel

0 =Ii(pi) + VI(p;) - [u v]

L(p1) Iy(p1) Ii(p1)
Le(p2) Iy(p2) ||uw | _ _| Ii(p2)
H H v H
I:(p25) Iy(p2s) Ii(p2s)

A d=b

25x2 2x1 25x1

Slide credit: Steve Seitz|

Conditions for solvability

Shly Sy || v > Iyl
AT A ATy

[21111 zmy] [u} =_[2111t]

When is this solvable?
+ ATA should be invertible
« ATA should not be very small
— eigenvalues A, and %, of ATA should not be very small
+ ATA should be well-conditioned
— A4/ k, should not be too large (14 = larger eigenvalue)

Solving the aperture problem

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad— b
25x2 2x1 25x1

Solution: solve least squares problem
« minimum least squares solution given by solution (in d) of:

(ATA) d = ATp

2x2 2x1 2x1
Yl Z]J:Iy wo_ > Iy
YLy Sy || v Y Iyl
AT'A ATb

« The summations are over all pixels in the K x K window
< This technique was first proposed by Lucas & Kanade (1981)

Slide credit: Steve Seitz]

— gradients very large or very small
— large A, small %,
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Low-texture region High-texture region

— gradients have small magnitude — gradients are different, large magnitudes
—small &4, small &, — large A4, large A,
Example use of optical flow: Example use of optical flow:
facial animation Motion Paint
Use optical flow to track brush strokes, in order to

animate them to follow underlying scene motion.

http://www.fxguide.com/article333.html http://www.fxguide.com/article333.html

Motion estimation techniques

Motion magnification

» Direct methods

« Directly recover image motion at each pixel from spatio-temporal
image brightness variations

« Dense motion fields, but sensitive to appearance variations
« Suitable for video and when image motion is small

» Feature-based methods

« Extract visual features (corners, textured areas) and track them
over multiple frames ©) Clustered
re

« Sparse motion fields, but more robust tracking
« Suitable when image motion is large (10s of pixels)

(@) Motion magnified. showing holes (6) Aftertexture in 2 to il hol (® Aferus fi

Liu et al. SIGGRAPH 2005
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magnified

Motion magnification

* http://people.csail.mit.edu/mrub/vidmag/

* Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John
Guttag, Frédo Durand, William T. Freeman
Eulerian Video Magnification for Revealing Subtle
Changes in the World ACM Transactions on Graphics,
Volume 31, Number 4 (Proc. SIGGRAPH), 2012

« Ce Liu, Antonio Torralba, William T. Freeman, Frédo
Durand, Edward H. Adelson. Motion Magnification
ACM Transactions on Graphics, Volume 24, Number 3
(Proc. SIGGRAPH), 2005

Today

* Optical flow: estimating motion in video
» Background subtraction
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Video as an “Image Stack”

time

Can look at video data as a spatio-temporal volume
« If camera is stationary, each line through time corresponds
to a single ray in space

| Alvosha Efros, CMU

Input Video

LAlvosha Efros, CMU

Average Image

| Alvosha Efros, CMU

Background Subtraction

» Given an image (mostly likely to be a video frame), we want
to identify the foreground objects in that image!

< Jocknkiy g s -

Motivation

> In most cases, objects are of interest, not the scene.

» Makes our life easier: less processing costs, and less room for
error.

Slide credit: Birgi

Background subtraction

* Simple techniques can do ok with static camera
* ...But hard to do perfectly

* Widely used:
— Traffic monitoring (counting vehicles, detecting &
tracking vehicles, pedestrians),

— Human action recognition (run, walk, jump, squat),
— Human-computer interaction
— Object tracking

Simple Approach

Background at time t:

Image at time t:
I(x.y.t)
|

\

for time t.

R\ T

1. Estimate the background
2. Subtract the estimated background from the input frame.

3. Apply a threshold, Th, to the absolute difference to get the
foreground mask.

Slide credit: Birgi

10
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Frame Differencing

» Background is estimated to be the previous frame.
Background subtraction equation then becomes:

B(x.y, t) =I(x,y, t —1)

U
|[I(x,y, t) = I(x,y,.t = 1) > Th
» Depending on the object structure, speed, frame rate and
global threshold, this approach may or may not be useful
(usually not).

Slide credit: Birgi Tamersoy|

Mean Filter

» In this case the background is the mean of the previous n
frames:

B(x.y.t) = %27:_01 I(x,y. t—1i)
¥
[(x.y. t) = 10 I(x.y. t —i)| > Th

» For n=10:

Estimated Background Foreground Mask

Slide credit: Birgi Tamersg

Average/Median Image

2/5/2018

Frame Differencing

Th=25 Th = 50

Th = 100 Th = 200

Slide credit: Birgi Tamersov]

Median Filter

» Assuming that the background is more likely to appear in a
scene, we can use the median of the previous n frames as the
background model:

B(x.,y.t) = median{l(x,y,t — i)}
U

|I(x.,y,t) — median{l(x,y.t — i)}| > Th where
i€{0,...,n—1}.

» For n=10:
Estimated Background

Foreground Mask

Slide credit: Birgi Tamerso

Alvosha Efros, CMU

| Alvosha Efros, CMU

11
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Pros and cons Background mixture models
Advantages: -
* Extremely easy to implement and use! »
* All pretty fast.
* Corresponding background models need not be constant, ® P
they change over time. ]

Disadvantages: 2 ]

* Accuracy of frame differencing depends on object speed _ (b)
and frame rate

* Median background model: relatively high memory
requirements.

* Setting global threshold Th...

! Idea: model each background
pixel with a mixture of
Gaussians; update its

(c) parameters over time.

When will this basic approach fail?

Adaptive Background Mixture Models for Real-Time Tracking, Chris Stauffer & W.E.L. Grimson

So far: features and filters
1 4 .

2

Transforming images;
gradients, textures,
edges, flow

12



