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Recap so far:
Grouping and Fitting

Goal: move from array of pixel values (or
filter outputs) to a collection of regions,
objects, and shapes.

Grouping: Pixels vs. regions

By grouping pixels
based on Gestalt-
inspired attributes,
we can map the
pixelsintoa set of
regions.

Each region is
consistent
accordingto the
featuresand
similarity metric we
used to do the
clustering.

clusters on color




Fitting: Edges vs. boundaries
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Edges useful signal to
indicate occluding
boundaries, shape.

Here the raw edge ...but quite of ten boundaries of interest
output is not so bad... are fragmented, and we hav eextra
fcomD ool “clutter” edge points.
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Fitting: Edges vs. boundaries

Given a model of
interest, we can
overcome some of the|
missing and noisy
edgesusing fitting
techniques.

With voting methods
like the Hough

transform, detected
pointsvote on possiblg
model parameters.

Voting with Hough transform

» Hough transform for fitting lines, circles, arbitrary
shapes
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In all cases, we knew the explicit model to fit.




Today

+ Fitting an arbitrary shape w ith “active”
deformable contours

Deformable contours

a.k.a. active contours, snakes

Giv en: initial contour (model) near desired object

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987] Figure credit Yuri Boykol

Deformable contours
a.k.a. active contours, snakes

Giv en: initial contour (model) near desired object
Goal: evolve the contour to fit exactobject boundary

Mainidea: elastic bandis

iteratively adjusted so asto

* be nearimage positionswith
high gradients, and

+ satisfy shape “preferences’ or
contour priors

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, |CCV1987] Figure credit Yuri Boykof
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Deformable contours: intuition
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Deformable contours vs. Hough

Like generalized Hough transform, useful for shape fitting; but
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P initial intermediate final
Hough Deformable contours
Rigid model shape Prior on shape types, butshape
Singlevoting passcan iteratively adjusted (deforms)

detect multipleinstances  Requiresinitialization nearby
One optimization “pass’ to fit a
single contour

Why do we want to fit
deformable shapes?
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* Some objectshave similar basic form but
some variety inthe contour shape.




Why do we want to fit
deformable shapes?
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Figure from Kass et al. 1987
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« Non-rigid,

deformable
objectscan
change their
shape over
time, e.g. lips,
hands...
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Why do we want to fit
deformable shapes?

* Non-rigid,

deformable
objectscan
change their
shape over

time, e.qg. lips,

hands...

» Non-rigid, deformable objectscan change their shape

overtime.

Figure credit: Julien Jomier

Why do we want to fit
deformable shapes?




Aspects we need to consider

* Representation of the contours
 Defining the energy functions
— External
— Internal
* Minimizing the energy function
+ Extensions:
— Tracking
— Interactive segmentation
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Representation

» We'll consider a discrete representation of the contour,
consisting of a list of 2d point positions (“vertices”).
(%» Yo Vi = (%, ¥i),
for i=0,1,...,n-1
b (X19' y19)
« Ateach iteration, we'llhave the

optionto move eachvertex to
anothernearby location (“state”).

Fitting deformable contours
How should we adjust the current contour to form the new
contour at each iteration?

 Define a cost function (“energy” function) thatsayshow
good a candidate configurationis.

» Seeknext configurationthat minimizesthatcost function.
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Energy function

The total energy (cost) of the currentsnake is
defined as: CP

Etotal = Einternal + Eexternal

Internal energy: encourage prior shape preferences:
e.g., smoothness, elasticity, particularknown shape.

External energy (‘image” energy): encourage contour to
fiton placeswhere image structures exist, e.g., edges.

A good fit between the current deformable contour
and the target shape in the image will yield alow
value for this cost function.
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External energy: intuition

* Measure how wellthe curve matchesthe image data
+ “Attract”the curve toward different image features
— Edges, lines, texture gradient, etc.

External image energy

Ho edgesaffect “snap” of
rub and?
Thi external energy from

imageasgravitational pull
towardsareasof high contrast

Magnitude of gradient V
- (Magnitude of gradient)
Gx(l )2 +Gy(| )2

~(G(1)? +G,(1)?)
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External image energy

* GradientimagesG,(x,y) andG,(x,y)

—

« Externalenergy ata pointon the curveis:

Eextemal (V) = _(l Gx (V) |2 + | Gy(V) |2 )
« External energy for the whole curve:

n-1
Eexternal = - Zl Gx (Xi’ Y|) I2 + | Gy (Xil y|) |2
i0

Internal energy: intuition

What are the underlying And in thisone?
boundariesin thisfragmented
edge image?

Internal energy: intuition

A priori, we wantto favor smooth shapes, contourswith
low curvature, contourssimilarto a known shape, etc.
to balance whatisactually observed (i.e., inthe gradient
image).




Internal energy

Fora continuous curve, a common internal energy tem
isthe “bendingenergy”.

At some point v(s) on the curve, thisis:

2 2 F
Einternat (V(5)) dv B L Y
internal v midermiy
ds||| |d?s
Tension, Stiffness,
Elasticity Curvature

g
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Internal energy

« Forourdiscrete representation, (5o @
)

v, =(X,Y:) i=0..n-1
d dv
di‘s/ =V, —V; os? Vg —vi) = (Vi —vig) =via —2vi vy

- NederihRSeeRdy HSHiMELNRBIE iV to position—-notspatial

image gradienr]Es.

Eimemal = Z aHVHl_ViHZ + ﬁHViA_ZVi +Vi—1H2
i=0

Why do these reflecttension and curvature?

Example: compare curvature

Ecurvature (Vi) = Hvi+1 - 21/i + Vi—le

= (X = 2%+ %)+ (Vi =2, + Yiy)’

@ (25
(2,2)
o O
1) (3.1) 11 O 3,1
B -2+ D2 +0-2(5)+1? B -2+ D% +(1-2(2) + 12
=(-8)2=64 =(-22=4




Penalizing elasticity

« Currentelasticenergy definition usesa discrete estimate
of the derivative:
n

Eelastic = Z (Z‘
i=0

N

2
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n-1
= @) (%=X +(Yia— V)
iz

What is the possible problem
with this definition?
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Penalizing elasticity

« Current elasticenergy definition usesa discrete estimate
of the derivative: .
-

E AN I I

elasic — 2o Vit Vill
i=0

Instead: n- —\

= a'Z((XM =%)7 + (Yo =¥ _d)

1
i=0

2

where d is the average distance between
pairs of points — updated at each iteration.

Dealing with missing data

* The preferencesforlow-curvature, smoothnesshelp
deal withmissing data:
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[Figure from Kass etal. 1987]
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Extending the internal energy:
capture shape prior

» Ifobjectissome smoothvariationon a
known shape, we can use a termthat
will penalize deviation from thatshape:

n-1
Biera + :a'Z(Vi _‘;i)2
i-0

where {V:} are the pointsof the
known shape.

Fig from Y. Boykov
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Total energy: function of the weights

Exa = Eiera +®EM

n-1
Ee«anal = _Z| Gx(xi’ Yi) |2 +|Gy(xi’ Yi) |2
i=0
n-1 _
s = 3, @ ulf + B2 40,

Total energy: function of the weights

* €.0.,& weightcontrolsthe penalty forinternal elasticity
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Fig from Y. Boykov
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Recap: deformable contour

+ A simple elastic snake is defined by:
— A set of n points,
— Aninternal energy term (tension,
bending, plusoptional shape prior)
— An external energy term (gradient-based)

+ To use to segment an object:
— Initialize inthe vicinity of the object

— Modifythe pointsto minimize the total
energy
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Energy minimization

» Several algorithms have been proposed to fit
deformable contours.

+ We'll look at two:
— Greedy search
— Dynamic programming (for 2d snakes)

Energy minimization: greedy

« Foreach point, search window around
itand move to where energy function
isminimal

— Typical window size, e.g., 5x 5 pixels

« Stop when predefined number of
pointshavenot changedin last
iteration, or after max number of
iterations

* Note:
— Convergence not guaranteed
— Need decent initialization
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Energy minimization

» Several algorithms have been proposed to fit
deformable contours.

+ We'll look at two:
— Greedy search
— Dynamic programming (for 2d snakes)
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Energy minimization:
dynamic programming

With thisform of the energy function, we can minimize
using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each pointisthe center
of the box, i.e.,the snake isoptimal in the local search
space constrained byboxes.

Fig fom Y. Boykov
[Amini, Weymouth, Jain, 1990]

Energy minimization:
dynamic programming

« Possible because snake energy canberewrittenasa
sum of pair-wise interaction potentals:

n-1
Etotal (Vll b ”Vn) = z EI (VI 1 l/i+1)
i=1

. Orsum of triple-interaction potentials.

n-1
Erotat (V111 V1) :Z E(ViaVisVia)
i1
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Snake energy: pair-wise interactions

n-1
Bt (%o X0 Yo ¥a) - = = 216,09 P +1G, (%, %)
i=1

n-1
+ a'Z(XM*Xi)z*(Yin*yi)z
i=1
Re-writing the above with v, = (x,, y,) : I
n-1 n-1
Bow Vioova) = =2 MGODIP + a > v —w I
i i=1

i=1

B (Vi1 Va) = BV, Vo) + By (Vo Vo) + + B (Vg V)

where E(vi,vi,)= -] G() I? +a| Via =V I
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Viterbi algorithm

Main idea: determine optimal position (state) of predecessor,
foreach possible position of self. Then backtirackfrom best
state forlast vertex.

Biow = E1 (Vi Vo) + By (V5. V3) ++ By (Vg V)

\?ﬂl . EJ(Vijz).Ez(szva). Ea(VyVA). EA(VA,an
i
1

E®

ertic

E@®=0 E,()

2

Complexity: O(nmz) vs. brute force search ?

Example adapted rom Y Bovk:

Energy minimization:
dynamic programming

With thisform of the energy function, we can minimize
using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each pointisthe center
of the box, i.e., the snake isoptimal in the local search
space constrained byboxes.

[Amini, Weymouth, Jain, 1990]

Fig fom Y. Boykov
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Energy minimization:
dynamic programming
DP can be appliedto optimize an openended snake

El(vl’v2)+ EZ(VZ‘V3)+"'+ En—l(vn—l‘vn)

Fora closed snake, a “loop”isintroduced into the total energy

El(leVZ) + EZ (VZ’VS) +.ot+ En—l(vn—l’vn) H En (vn’vl)

\4

-1
v no ® [ IS ® e - Work around:
"t e 1) Fixv;and solve forrest .
.
Vi e > o e 2) Fix an intermediate node at
2 Vg T4 its position found in (1),

solve for rest.
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Aspects we need to consider

* Representation of the contours
 Defining the energy functions
— External
— Internal
* Minimizing the energy function
» Extensions:
— Tracking
— Interactive segmentation

Tracking via deformable contours

1. Use final contour/model extracted at frame t as
an initial solution for frame t+1

2. Evolve initial contour tofit exactobject boundary
atframe t+1

Tracking Heart Ventricles
(muttiple  frames)
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Tracking via deformable contours

1 Vg
Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

Applications: Traffic monitoring
Human-computer interaction
Animation
Surveillance
Computer assisted diagnosis in medical imaging
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3D active contours

http://www.cvl.isy. liu. se/ScOut/Masters/Papers/Ex1708. pdf

Jorgen Ahlberg

Limitations

* May over-smooth the boundary

Y Y
b iy

« Cannot follow topological changesof objects

16


http://www.robots.ox.ac.uk/~vdg/~vdg/

Limitations

+ Externalenergy:snake doesnotreally “see” object
boundariesin theimage unlessit getsvery close to it.

~N
image gradients V|
are large only directly on the boundary

Distance transform

« Externalimage can instead betakenfromthe distance
transform of the edgeimage.

A

original -gradient distance transform

Value at (xy) tells how far
that position is from the

nearest edge point (or other
binary mage structure)
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>> help bwdist

Interactive forces

How can we implement such an interactive
force with deformable contours?
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Interactive forces

* An energy function can be altered online based
on user input — use the cursor to push or pull the
initial snake aw ay froma point.

+ Modify external energy term to include:

n-1 2

P Epush = Z '

i:o|Vi_p|2

Nearby points get pushed hardest
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Intelligent scissors

Another form of
interactive
segmentation:

Compute optimal paths
from every point to
the seed based on
edge-related costs.

Figure 2: Iy 8 live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segments
from previous free point positions (1, 1), and t,) are shown in green.

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]

Intelligent scissors

http://rivit.cs. byu.edu/ Eric/Eric. htiml
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scissors/toboggan_scissors.mov

Intelligent scissors

http://rivit.cs.byu.edu/Eric/Eric. html
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Deformable contours: pros and cons

Pros:

« Useful to trackand fit non-rigid shapes

« Contourremainsconnected

« Possible tofillin “subjective” contours

« Flexibility inhow energy functionisdefined, weighted.

Cons:

* Must have decentinitialization near true boundary, may
get stuckin local minimum

« Parametersof energy function must be set well based on
priorinformation

Summary

« Deformable shapesand active contoursare useful for
— Segmentation: fit or “snap” to boundary inimage
— Tracking: previous frame’s estimate serves to initialize the next
« Fittingactive contours:

— Define terms to encourage certain shapes, smoothness, low
curvature, push/pulls, ...

— Use weights to control relative influence of each component cost

— Can optimize 2d snakes with Viterbi algorithm.

« Image structure (esp. gradients) can act asattraction
force forinteractive ssgmentation methods.
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