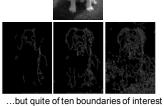


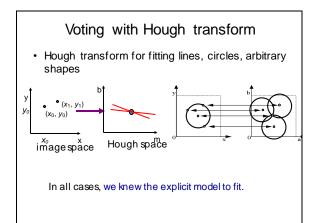
clusters on color


By grouping pixels based on Gestaltinspired attributes, we can map the pixelsinto a set of regions.

Each region is consistent according to the featuresand similarity metric we used to do the clustering.

Fitting: Edges vs. boundaries Edges usef ul signal to indicate occluding boundaries, shape.

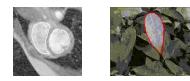
Here the raw edge output is not so bad...


are fragmented, and we hav eextra "clutter" edge points.

Fitting: Edges vs. boundaries

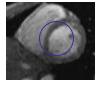
Given a model of interest, we can overcome some of the missing and noisy edges using fitting techniques.

With voting methods like the Hough transform, detected points vote on possible model parameters.



2

Today


 Fitting an arbitrary shape with "active" deformable contours

Deformable contours

a.k.a. active contours, snakes

Given: initial contour (model) near desired object

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

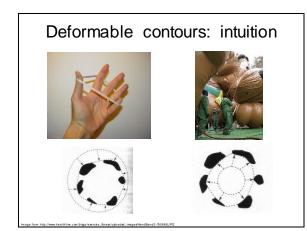
Deformable contours

a.k.a. active contours, snakes

Given: initial contour (model) near desired object **Goal**: evolve the contour to fit exact object boundary

Main idea: elastic band is iteratively adjusted so as to

 be near image positions with high gradients, and

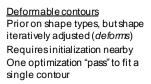

Figure credit Yuri B


• satisfy shape "preferences" or contour priors

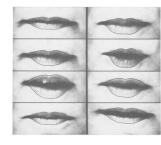
Figure credit Yuri B

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

3


Deformable contours vs. Hough

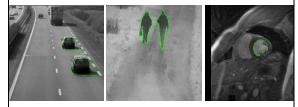
Like generalized Hough transform, useful for shape fitting; but



Hough Rigid model shape Single voting pass can detect multiple instances

Why do we want to fit deformable shapes?

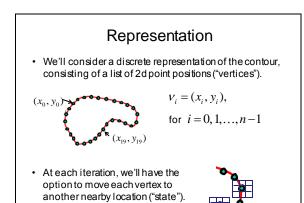
Non-rigid, deformable objects can change their shape over time, e.g. lips, hands...


Figure from Kass et al. 1987

Why do we want to fit deformable shapes?

Non-rigid, deformable objects can change their shape over time, e.g. lips, hands...

Why do we want to fit deformable shapes?



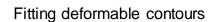
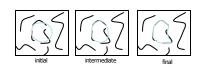

Non-rigid, deformable objects can change their shape over time.

Figure credit: Julien Jomier

Aspects we need to consider


- · Representation of the contours
- Defining the energy functions
 - External
 - Internal
- Minimizing the energy function
- Extensions:
 - Tracking
 - Interactive segmentation

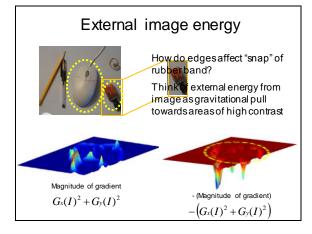
How should we adjust the current contour to form the new contour at each iteration?

- Define a cost function ("energy" function) that says how good a candidate configuration is.
- · Seeknext configuration that minimizes that cost function.

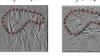
Energy function

The total energy (cost) of the current snake is defined as:

 $E_{total} = E_{internal} + E_{external}$

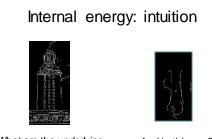

Internal energy: encourage *prior* shape preferences: e.g., smoothness, elasticity, particular known shape.

External energy ("image" energy): encourage contour to fit on places where image structures exist, e.g., edges.


A good fit between the current deformable contour and the target shape in the image will yield a **low** value for this cost function.

External energy: intuition

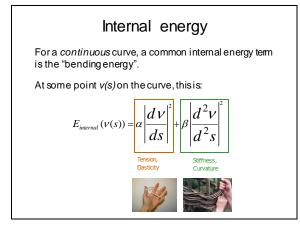
- · Measure how well the curve matches the image data
- "Attract" the curve toward different image features
 - Edges, lines, texture gradient, etc.



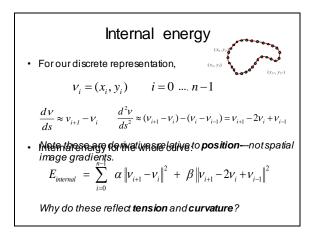
• Gradient images $G_x(x, y)$ and $G_y(x, y)$

- External energy at a point on the curve is: $E_{external}(\nu) = -(|G_x(\nu)|^2 + |G_y(\nu)|^2)$
- External energy for the whole curve:

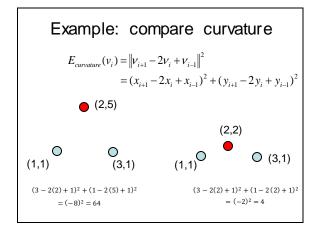
$$E_{external} = -\sum_{i=0}^{n-1} |G_x(x_i, y_i)|^2 + |G_y(x_i, y_i)|^2$$

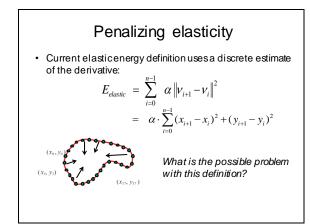

What are the underlying And boundaries in this fragmented edge image?

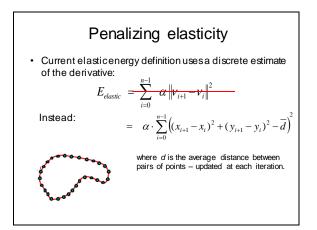
And in thisone?

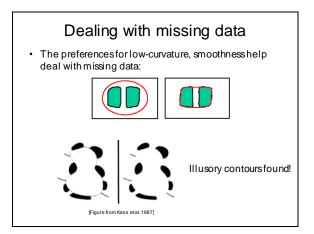

Internal energy: intuition

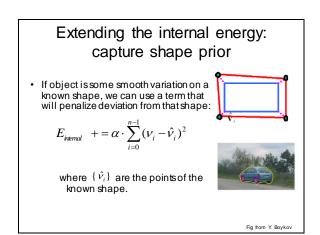
A priori, we want to favor **smooth** shapes, contours with **low curvature**, contours similar to a **known shape**, etc. to balance what is actually observed (i.e., in the gradient image).

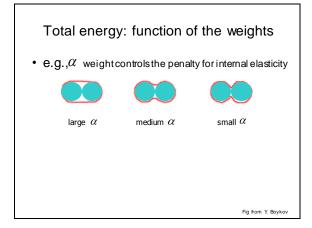












Total energy: function of the weights

$$E_{total} = E_{internal} + \sum_{extend} E_{extend}$$

$$E_{extend} = -\sum_{i=0}^{n-1} |G_x(x_i, y_i)|^2 + |G_y(x_i, y_i)|^2$$

$$E_{internal} = \sum_{i=0}^{n-1} \left(\frac{\partial}{\partial i} (\overline{d} - ||v_{i+1} - v_i||)^2 + \frac{\partial}{\partial i} ||v_{i+1} - 2v_i + v_{i-1}||^2 \right)$$

Recap: deformable contour

- · A simple elastic snake is defined by:
 - A set of *n* points,
 - An internal energy term (tension, bending, plus optional shape prior)
 - An external energy term (gradient-based)
- · To use to segment an object:
 - Initialize in the vicinity of the object
 - Modify the points to minimize the total energy

Energy minimization

- Several algorithms have been proposed to fit deformable contours.
- We'll look at two:
 - Greedy search
 Dynamic programming (for 2d snakes)

Energy minimization: greedy

• For each point, search window around it and move to where energy function is minimal

- Typical window size, e.g., 5 x 5 pixels
- Stop when predefined number of points have not changed in last iteration, or after max number of iterations
- · Note:
 - Convergence not guaranteed
 - Need decent initialization

Energy minimization

- Several algorithms have been proposed to fit deformable contours.
- We'll look at tw o:

 Greedy search
 Dynamic programming (for 2d snakes)

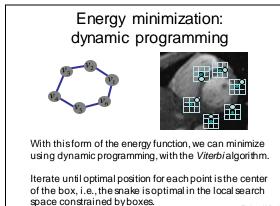
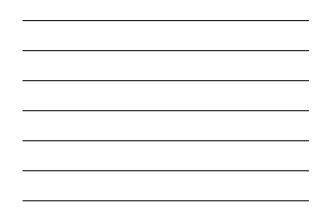
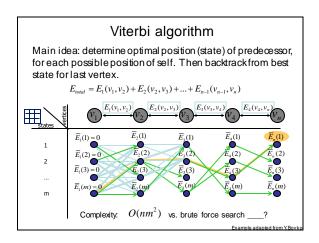


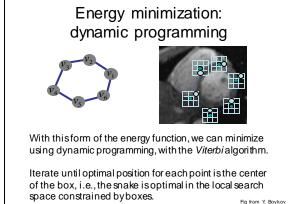
Fig from Y. Boykov nini, Weymouth, Jain, 1990]

Energy minimization: dynamic programming


• Possible because snake energy can be rewritten as a sum of pair-wise interaction potentials:

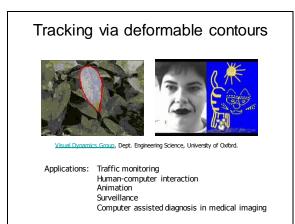

$$E_{total}(v_1,...,v_n) = \sum_{i=1}^{n-1} E_i(v_i,v_{i+1})$$

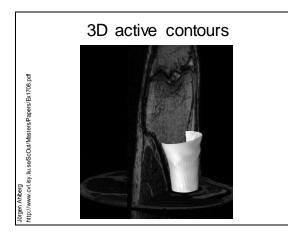
Or sum of triple-interaction potentials.

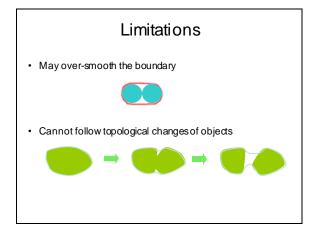

$$E_{total}(v_1,...,v_n) = \sum_{i=1}^{n-1} E_i(v_{i-1},v_i,v_{i+1})$$

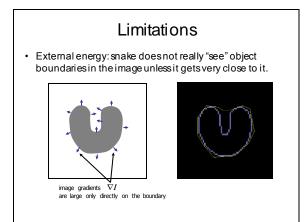
 $\begin{array}{l} \textbf{Snake energy: pair-wise interactions} \\ E_{total}(x_{1},...,x_{n},y_{1},...,y_{n}) &= -\sum_{i=1}^{n-1} |G_{x}(x_{i},y_{i})|^{2} + |G_{y}(x_{i},y_{i})|^{2} \\ &+ \alpha \cdot \sum_{i=1}^{n-1} (x_{i+1} - x_{i})^{2} + (y_{i+1} - y_{i})^{2} \\ \textbf{Re-writing the above with } v_{i} = (x_{i},y_{i}) : \\ E_{tokal}(v_{1},...,v_{n}) &= -\sum_{i=1}^{n-1} ||G(v_{i})||^{2} + \alpha \cdot \sum_{i=1}^{n-1} ||v_{i+1} - v_{i}||^{2} \\ \hline E_{tokal}(v_{1},...,v_{n}) &= E_{1}(v_{1},v_{2}) + E_{2}(v_{2},v_{3}) + ... + E_{n-1}(v_{n-1},v_{n}) \\ \textbf{where } E_{i}(v_{i},v_{i+1}) = - ||G(v_{i})||^{2} + \alpha ||v_{i+1} - v_{i}||^{2} \end{array}$

[Amini, Weymouth, Jain, 1990]


Energy minimization: dynamic programming DP can be applied to optimize an open ended snake $E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n)$ $v_1 \bullet \bullet \bullet \bullet v_n$ For a closed snake, a "loop" is introduced into the total energy $E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n) + E_n(v_n, v_1)$ $v_1 \bullet \bullet \bullet \bullet v_n$ For a closed snake, a "loop" is introduced into the total energy $E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n) + E_n(v_n, v_1)$ $v_1 \bullet \bullet \bullet \bullet \bullet v_n$ For a closed snake, a "loop" is introduced into the total energy $E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n) + E_n(v_n, v_1)$ $v_1 \bullet \bullet \bullet \bullet \bullet v_n$ For a closed snake, a "loop" is introduced into the total energy $E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n) + E_n(v_n, v_1)$ $v_1 \bullet \bullet \bullet \bullet \bullet v_n$ For a closed snake, a "loop" is introduced into the total energy $E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n) + E_n(v_n, v_1)$ $v_1 \bullet \bullet \bullet \bullet \bullet v_n$ For a closed snake, a "loop" is introduced into the total energy $E_1(v_1, v_2) + E_2(v_2, v_3) + ... + E_{n-1}(v_{n-1}, v_n) + E_n(v_n, v_1)$ $v_1 \bullet \bullet \bullet \bullet \bullet v_n$ Solve for rest.



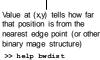

Aspects we need to consider

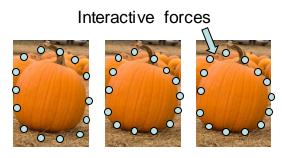

- · Representation of the contours
- · Defining the energy functions
 - External
 - Internal
- Minimizing the energy function
- Extensions:
 - Tracking
 - Interactive segmentation

Tracking via deformable contours 1. Use final contour/model extracted at frame t as an initial solution for frame t+1 2. Evolve initial contour to fit exact object boundary at frame t+1 3. Repeat, initializing with most recent frame.

Distance transform

• External image can instead be taken from the **distance transform** of the edge image.





original

*****81

How can we implement such an *interactive* force with deformable contours?

Interactive forces

- An energy function can be altered online based on user input – use the cursor to push or pull the initial snake away from a point.
- Modify external energy term to include:

 $E_{push} = \sum_{i=0}^{n-1} \frac{r^2}{|v_i - p|^2}$

Nearby points get pushed hardest

Intelligent scissors

Another form of interactive segmentation:

Compute optimal paths from every point to the seed based on edge-related costs.

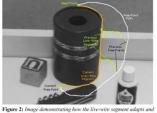
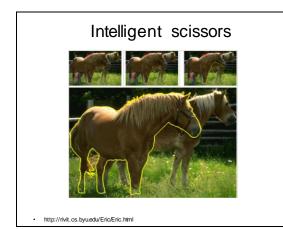
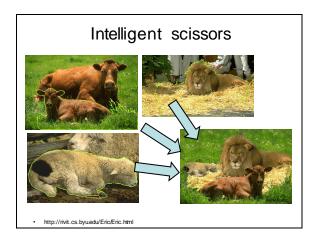




Figure 2: image aemonstrating now the twe-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions ($t_0, t_1, and t_2$) are shown in green.

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]

Deformable contours: pros and cons

Pros:

- Useful to track and fit non-rigid shapes
- Contour remains connected
- Possible to fill in "subjective" contours
- Flexibility in how energy function is defined, weighted.

Cons:

- Must have decentinitialization near true boundary, may get stuck in local minimum
- Parameters of energy function must be set well based on prior information

Summary

- · Deformable shapes and active contours are useful for
 - Segmentation: fit or "snap" to boundary in image
 - Tracking: previous frame's estimate serves to initialize the next
- · Fitting active contours:
 - Define terms to encourage certain shapes, smoothness, low
 - curvature, push/pulls, ...
 - Use weights to control relative influence of each component cost
 - Can optimize 2d snakes with Viterbi algorithm.
- Image structure (esp. gradients) can act as attraction force for *interactive* segmentation methods.