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Fitting a transformation:

feature-based alignment

Tues Oct 13

Motivation: Recognition 

Figures from David Low e
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Motivation: medical image 

registration

Motivation: mosaics

Image f rom http://graphics.cs.cmu.edu/courses/15-463/2010_f all/
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Last week

• Interest point detection

– Harris corner detector

– Laplacian of Gaussian, automatic scale selection

• Invariant descriptors

– Rotation according to dominant gradient direction

– Histograms for robustness to small shifts and 

translations (SIFT descriptor)

Review questions

• What is the purpose of the “ratio test” for local 

feature matching?

• What aspects of the SIFT descriptor design 

promote robustness to lighting changes?  
Robustness to rotation and translation?

• Does extracting multiple keypoints for multiple 

local maxima in scale space help recall or 
precision during feature matching?

• How far in the image plane can an object rotate 
before the SIFT descriptors will not match?
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Multi-view: what’s next

Additional questions we need to address to achieve 

these applications:

• Fitting a parametric transformation given putative 

matches

• Dealing with outlier correspondences

• Exploiting geometry to restrict locations of possible 

matches

• Triangulation, reconstruction

• Efficiency when indexing so many keypoints

Coming up: robust feature-based alignment

Source: L. Lazebnik
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• Extract features

Source: L. Lazebnik

Coming up: robust feature-based alignment

• Extract features

• Compute putative matches

Source: L. Lazebnik

Coming up: robust feature-based alignment
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• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T (small group of putative 

matches that are related by T)

Source: L. Lazebnik

Coming up: robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 

with T)

Source: L. Lazebnik

Coming up: robust feature-based alignment
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• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 

with T)

Source: L. Lazebnik

Coming up: robust feature-based alignment

Today

• Feature-based alignment

– 2D transformations

– Affine fit

– RANSAC for robust fitting
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Alignment as fitting

• Previous lectures: fitting a model to features in one image

• Alignment: fitting a model to a transformation between 

pairs of features (matches) in two images


i

i Mx ),(residual

 
i

ii xxT )),((residual

Find model M that minimizes

Find transformation T

that minimizes

M

x i

T

x i

xi
'

Slide credit: Lana Lazebnik

Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

Source: Alyosha Efros



10/12/2015

9

Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?

• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Source: Alyosha Efros

Scaling

Scaling a coordinate means multiplying each of its components by 
a scalar

Uniform scaling means this scalar is the same for all components:

 2

Source: Alyosha Efros
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Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Source: Alyosha Efros

Scaling

Scaling operation:

Or, in matrix form:
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scaling matrix S

Source: Alyosha Efros
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What transformations can be 

represented with a 2x2 matrix?

2D Rotate around (0,0)?
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2D Shear?
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Source: Alyosha Efros

2D Scaling?
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What transformations can be 

represented with a 2x2 matrix?

Source: Alyosha Efros

2D Mirror about Y axis?

yy
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2D Mirror over (0,0)?
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2D Linear Transformations

Only linear 2D transformations can be represented with a 2x2 

matrix.

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror



























y

x

dc

ba

y

x

'

'

Source: Alyosha Efros

Homogeneous coordinates

homogeneous image 

coordinates

Converting from homogeneous coordinates

To convert to homogeneous coordinates:
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Homogeneous Coordinates

Q: How can we represent 2d translation as a 3x3 matrix 

using homogeneous coordinates?

A: Using the rightmost column:
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Basic 2D Transformations

Basic 2D transformations as 3x3 matrices
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Source: Alyosha Efros

2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel
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Today

• Feature-based alignment

– 2D transformations

– Affine fit

– RANSAC for robust fitting

Alignment problem

• We have previously considered how to fit a model to 

image evidence

– e.g., a line to edge points, or a snake to a deforming contour

• In alignment, we will fit the parameters of some 

transformation according to a set of matching feature 

pairs (“correspondences”).

T

xi

xi

'
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Image alignment

• Two broad approaches:

– Direct (pixel-based) alignment

• Search for alignment where most pixels agree

– Feature-based alignment

• Search for alignment where extracted features agree

• Can be verified using pixel-based alignment

Let’s start with affine transformations

• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras

• Can be used to initialize fitting for more complex 

models

Lana Lazebnik
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Fitting an affine transformation

• Assuming we know the correspondences, how do we 

get the transformation?
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An aside: Least Squares Example

Say we have a set of data points (X1,X1’), (X2,X2’), 

(X3,X3’), etc.  (e.g. person’s height vs. weight)

We want a nice compact formula (a line) to predict X’s 

from Xs:  Xa + b = X’

We want to find a and b

How many (X,X’) pairs do we need?

What if the data is noisy?
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Fitting an affine transformation

• Assuming we know the correspondences, how do we 

get the transformation?
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Fitting an affine transformation

• How many matches (correspondence pairs) do we 

need to solve for the transformation parameters?

• Once we have solved for the parameters, how do we 

compute the coordinates of the corresponding point 

for                      ? 

• Where do the matches come from?
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http://www.vlfeat.org/overview/sift.html

http://www.vlfeat.org/overview/sift.html

Interest points and their 
sca les and orientations
(random subset of 50)

SIFT descriptors

Recall: Scale Invariant Feature Transform 

(SIFT) descriptor [Lowe 2004] 

Recall: SIFT (preliminary) matches

http://www.vlfeat.org/overview/sift.html



10/12/2015

20

Fitting an affine transformation

Figures from David Low e, ICCV 1999

Affine  model approximates perspective projection of 

planar objects.

Today

• Feature-based alignment

– 2D transformations

– Affine fit

– RANSAC for robust fitting
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Outliers

• Outliers can hurt the quality of our parameter 

estimates, e.g., 

– an erroneous pair of matching points from two images

– an edge point that is noise, or doesn’t belong to the 

line we are fitting.

Outliers affect least squares fit
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Outliers affect least squares fit

RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, 
so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line (transformation) 

won’t have much support from rest of the points
(matches).
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RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 
points (i.e., points whose distance from the 

line is less than t)

• If there are d or more inliers, accept the line 

and refit using all inliers

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

Least-squares fit

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 

model
3. Compute error 

function

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
cons istent with 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 

model
3. Compute error 

function
4. Select points 

cons istent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
cons istent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

57

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 

model
3. Compute error 

function
4. Select points 

cons istent with 
model

5. Repeat 
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
cons istent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

That is an example fitting a model 

(line)…

What about fitting a transformation 
(translation)?
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RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group of points on which to 

base transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  

estimate of transformation on all of the inliers

• Keep the transformation with the largest number of 

inliers

RANSAC example: Translation

Putative matches

Source: Rick Szeliski
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RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Find “average” translation vector

RANSAC pros and cons

• Pros
• Simple and general

• Applicable to many different problems

• Often works well in practice

• Cons
• Lots of parameters to tune

• Doesn’t work well for low inlier ratios (too many iterations, 

or can fail completely)

• Can’t always get a good initialization 

of the model based on the minimum 

number of samples

Lana Lazebnik


