

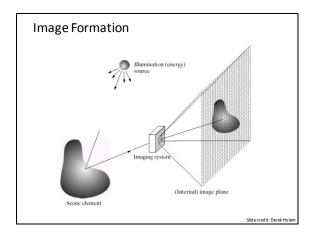
Linear Filters Tues Sept 1 Kristen Grauman UT Austin

Announcements

- Piazza for assignment questions
- A0 due Friday Sept 4. Submit on Canvas.

Plan for today

- Image noise
- · Linear filters
 - Examples: smoothing filters
- Convolution / correlation



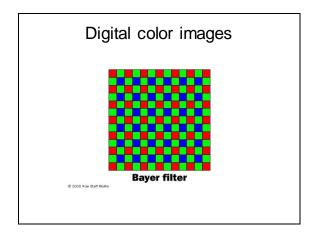
Digital camera

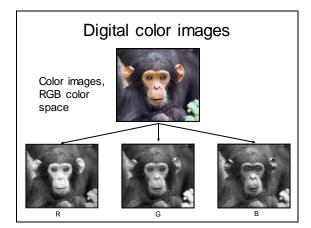
A digital camera replaces film with a sensor array

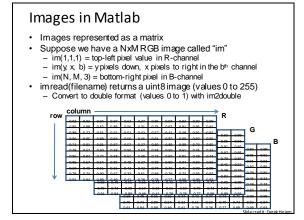
- Each cell in the array is light-sensitive diode that converts photons to electrons
- http://electronics.howstuffworks.com/digital-camera.htm

Slide by Steve Seitz

Digital images • Sample the 2D space on a regular grid • Quantize each sample (round to nearest integer) • Image thus represented as a matrix of integer values.







Main idea: image filtering

- · Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- · Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Motivation: noise reduction

· Even multiple images of the same static scene will not be identical.

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Impulse noise Gaussian noise

Gaussian noise $f(x,y) = \overbrace{f(x,y)}^{\text{Noise process}} \qquad \text{Gaussian i.i.d. ("white") noise:} \\ f(x,y) = \overbrace{f(x,y)}^{\text{Noise process}} \qquad \text{Gaussian i.i.d. ("white") noise:} \\ \Rightarrow \text{ no ise} = \operatorname{randn}(\operatorname{size (im)}).*\operatorname{sigma}; \\ \Rightarrow \text{ ou tput } = \operatorname{in + noise}; \\ \text{What is impact of the sigma?}$

Motivation: noise reduction

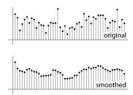
- Even multiple images of the same static scene will not be identical.
- How could we reduce the noise, i.e., give an estimate of the true intensities?
- · What if there's only one image?

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - · Expect noise processes to be independent from pixel to pixel

First attempt at a solution

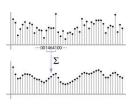
- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:



Source: S. Marschner

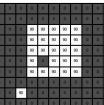
Weighted Moving Average

Non-uniform w eights [1, 4, 6, 4, 1] / 16

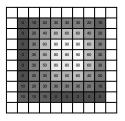


Source: S. Marschner

Moving Average In 2D



G	x.	11
\sim		9



Source: S. Seitz

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform Loop over all pixels in neighborhood weight to each pixel around image pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

neighboring pixel's relative position:
$$G[i,j] = \sum_{u=-k}^k \sum_{v=-k}^k \underbrace{H[u,v]F[i+u,j+v]}_{\textit{Non-uniform weights}}$$

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

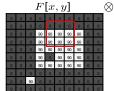
This is called $\operatorname{cross-correlation}, \operatorname{denoted} G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

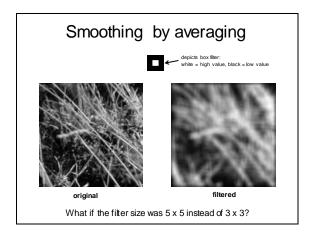
Averaging filter

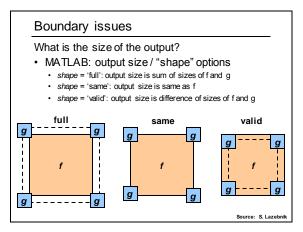
• What values belong in the kernel H for the moving av erage example?



H[u, v]"box filter"

$$G = H \otimes F$$





Boundary issues What about near the edge? • the filter window falls off the edge of the image • need to extrapolate • methods: - clip filter (black) - wrap around - copy edge - reflect across edge

Boundary issues

What about near the edge?

- the filter window falls off the edge of the image
- · need to extrapolate
- · methods (MATLAB):
 - clip filter (black): - wrap around:

imfilter(f, g, 0)

imfilter(f, g, 'circular')

- copy edge:

imfilter(f, g, 'replicate')

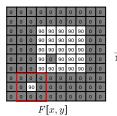
- reflect across edge: imfilter(f, g, 'symmetric')

Source: S. Marschner

Gaussian filter

· What if we want nearest neighboring pixels to have the most influence on the output?

H[u,v]



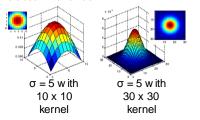
This kernel is an approximation of a 2d Gaussian function:

· Removes high-frequency components from the image ("low-pass filter").

Smoothing with a Gaussian

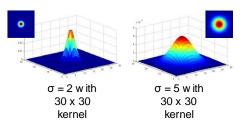
Gaussian filters

- · What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels



Gaussian filters

- · What parameters matter here?
- · Variance of Gaussian: determines extent of smoothing

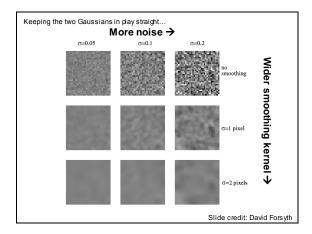


Matlab

- >> hsize = 10;
- >> sigma = 5;
- >> h = fspecial('gaussian' hsize, sigma);
- >> mesh(h);

- >> imagesc(h);
- >> outim = imfilter(im, h); % correlation
- >> imshow(outim);

Smoothing with a Gaussian Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing. for sigma=1:3:10 h = fspecial ('gaussian', fsize, sigma); out = infilter(im, h); imshow (out); pause; end



Properties of smoothing filters

- Smoothing
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

Filtering an impulse signal

What is the result of filtering the impulse signal (image) *F* with the arbitrary kernel *H*?

F[x, y]

Convolution

- · Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

$$\uparrow$$
Notation for

convolution operator

Н

Convolution vs. correlation

Conv olution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G=H\otimes F$$

For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

Predict the outputs using correlation filtering 0 0 0 0 1 0 0 0 0

Practice with linear filters

Original

Practice with linear filters

Original

Filtered

	-
Practice with linear filters	
0 0 0 0 0 1 0 0 0	
Original	
Source: D. Lowe	
	1
Properties of convolution	
Shift invariant: Operator behaves the same every where, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the	
neighborhood. • Superposition:	
-h*(f1+f2) = (h*f1) + (h*f2)	
]
Properties of convolution Commutative:	
f * g = g * f • Associative	
(f * g) * h = f * (g * h)Distributes ov er addition	
f * (g + h) = (f * g) + (f * h) • Scalars factor out	
kf * g = f * kg = k(f * g)	

· Identity:

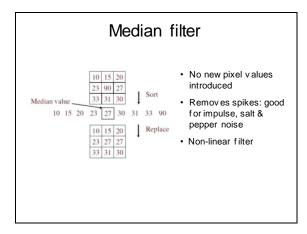
unit impulse e = [..., 0, 0, 1, 0, 0, ...]. f * e = f

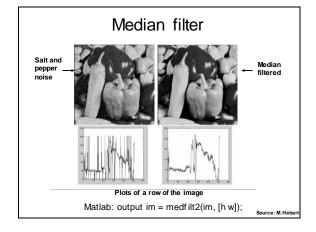
Separability

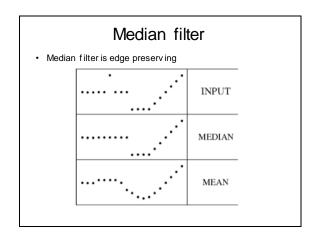
- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

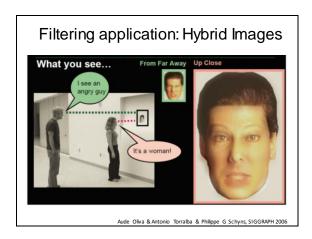
Effect of smoothing filters

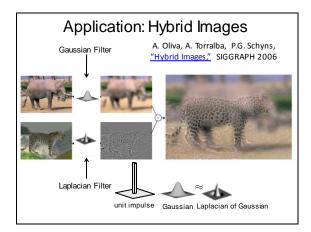
Salt and pepper noise













Summary

- Image "noise"
- · Linear filters and convolution useful for
 - Enhancing images (smoothing, removing noise)
 - · Box filter
 - Gaussian filter
 - · Impact of scale / width of smoothing filter
 - Detecting features (next time)
- · Separable filters more efficient
- · Median filter: a non-linear filter, edge-preserving

Coming up

- · Thursday:
 - Filtering part 2: filtering for features (edges, gradients, seam carving application)
 - See reading assignment on webpage
- · Friday:
 - Assignment 0 is due on Canvas 11:59 PM