

Previously

- Interest point detection
 - Harris corner detector
 - Laplacian of Gaussian, automatic scale selection
- · Invariant descriptors
 - Rotation according to dominant gradient direction
 Histograms for robustness to small shifts and translations (SIFT descriptor)

Multi-view: what's next

Additional questions we need to address to achieve these applications:

- Fitting a parametric transformation given putative matches
- Dealing with outlier correspondences
- Exploiting geometry to restrict locations of possible matches
- Triangulation, reconstruction
- · Efficiency when indexing so many keypoints

Source: L. Lazebnik

Coming up: robust feature-based alignment Extract features ٠ Compute putative matches

- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T) •

Source: L. Lazebnil

Source: L. Lazebnil

Now

- · Feature-based alignment
 - 2D transformations
 - Affine fit
 - RANSAC for robust fitting

Alignment problem

- We have previously considered how to fit a model to image evidence
 - e.g., a line to edge points, or a snake to a deforming contour
- In alignment, we will fit the parameters of some **transformation** according to a set of matching feature pairs ("correspondences").

Slide credit: Lana Lazebnik

Figures from David Lowe, ICCV 1999

Today

Feature-based alignment

2D transformations
Affine fit
RANSAC for robust fitting

Outliers

- **Outliers** can hurt the quality of our parameter estimates, e.g.,
 - an erroneous pair of matching points from two images
 an edge point that is noise, or doesn't belong to the line we are fitting.

RANSAC

RANdom Sample Consensus

- **Approach**: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line (transformation) won't have much support from rest of the points (matches).

Kristen Grauman

Lana Lazebnik

RANSAC for line fitting

Repeat **N** times:

- Draw **s** points uniformly at random
- Fit line to these **s** points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are **d** or more inliers, accept the line and refit using all inliers

How many trials for RANSAC?

- To ensure good chance of finding true inliers, need sufficient number of trials, S.
- Let p be probability that any given match is valid

Let P be to the total prob of success after S trials.

- Likelihood in one trial that all k random samples are inliers is $\ensuremath{\mathsf{p}}^k$
- Likelihood that all S trials will fail is $1-P = (1-p^k)^S$
- Required minimum number of trials is $S = log(1-P) / log(1-p^k)$

Kristen Grauman

How many trials for RANS	SAC?		
To ensure good chance of findi sufficient number of trials, S.	ng true	inliers,	, need
Let p be probability that any giv	en mat	ch is va	alid
Let P be to the total prob of suc	cess a	fter S ti	rials.
Likelihood in one trial that all k random samples are			les are
inliers is p ^k	k	n	S
Likelihood that all S trials will fa	Ĩ.	٢	.
1-P = (1-p ^k) ^S	3	0.5	35
Required minimum number of t	6	0.6	97
$S = log(1-P) / log(1-p^k)$	6	0.5	293

RANSAC song – danielwedge.com
When you have outliers you may face much frustration if you include them in a model fitting operation. But if your model's fit to a sample set of minimal size, the probability of the set being outlier-free will rise. Brute force tests of all sets will cause computational constipation.
N random samples will provide an example of a fitted model uninfluenced by outliers. No need to test all combinations!
Each random trial should have its own unique sample set and make sure that the sets you choose are not degenerate. <i>N</i> , the number of sets, to choose is based on the probability of a point being an outlier, and of finding a set that's outlier free. Updating <i>N</i> as you go will minimise the time spent.
So if you gamble that N samples are ample to fit a model to your set of points, it's likely that you will win the bet.
Select the set that boasts that its number of inliers is the most (you're almost there). Fit a new model just to those inliers and discard the rest, an estimated model for your data is now possessed! This marks the end point of your model fitting quest

That is an example fitting a model (line)...

What about fitting a transformation (translation)?

RANSAC: General form

- RANSAC loop:
- 1. Randomly select a *seed group* on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find inliers to this transformation
- 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

