

Announcements

- Piazza for assignment questions
- A0 due Friday Jan 27. Submit on Canvas.

Course homepage

http://vision.cs.utexas.edu/378h-spring2017/

Tues Jan 17	Course Intro	Textbook Sec 1.1- 1.3 Course requirements UTCS account setup Basic Matlab tutorial Running Matlab at UT	slides	A0 out See optional Latex info
	Features and filters	Sec 3.1.1-2, 3.2	Linear filters	
Tues Jan 24		Sec 3.2.3, 4.2	Gradients and	A0 due Friday Jan 27

Plan for today

- Image noise
- Linear filters
 - Examples: smoothing filters
- Convolution / correlation

Images as matrices

Result of averaging 100 similar snapshots

Little Leaguer

Kids with Santa

The Graduate

Newlyweds

From: 100 Special Moments, by Jason Salavon (2004) http://salavon.com/SpecialMoments/SpecialMoments.shtml

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- http://electronics.howstuffworks.com/digital-camera.htm

Slide by Steve Seitz

Digital images

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Slide credit: Derek Hoiem

Digital images

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)
- Image thus represented as a matrix of integer values.

Adapted from S. Seitz

Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x pixels to right in the bth channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

Main idea: image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- · Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Adapted from Derek Hoiem

Motivation: noise reduction

• Even multiple images of the **same static scene** will not be identical.

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original Salt and pepper noise

Impulse noise

Gaussian noise

Source: S. Seitz

Motivation: noise reduction

- Even multiple images of the same static scene will not be identical.
- How could we reduce the noise, i.e., give an estimate of the true intensities?
- · What if there's only one image?

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - · Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Source: S. Marschner

Weighted Moving Average

Can add weights to our moving average Weights [1, 1, 1, 1, 1] / 5

Source: S. Marschner

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Moving Average In 2D

G[x, y]

Source: S. Seitz

Moving Average In 2D

 G[x,y]											
0	10	20	30	30	30	20	10				
0	20	40	60	60	60	40	20				
0	30	60	90	90	90	60	30				
0	30	50	80	80	90	60	30				
0	30	50	80	80	90	60	30				
0	20	30	50	50	60	40	20				
10	20	30	30	30	30	20	10				
10	10	10	0	0	0	0	0				

Source: S. Seitz

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform

Loop over all pixels in neighborhood weight to each pixel around image pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u,v]}_{\text{Non-uniform weights}} F[i+u,j+v]$$

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called **cross-correlation**, denoted $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "**kernel**" or "**mask**" H[u,v] is the prescription for the weights in the linear combination.

Averaging filter

 What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$

Boundary issues

What about near the edge?

- · the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):

- clip filter (black): imfilter(f, g, 0) - wrap around: imfilter(f, g, 'circular') - copy edge: imfilter(f, g, 'replicate') - reflect across edge: imfilter(f, g, 'symmetric')

Source: S. Marschner

Gaussian filter

· What if we want nearest neighboring pixels to have the most influence on the output?

This kernel is an approximation of a 2d Gaussian function:

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

· Removes high-frequency components from the image ("low-pass filter").

Source: S. Seitz

Smoothing with a Gaussian

Gaussian filters

- What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

r = 5 with 10 x 10 kernel

30 x 30 kernel

Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

Matlab

- >> hsize = 10; >> sigma = 5;
- >> h = fspecial('gaussian' hsize, sigma);
- >> mesh(h);
- >> imagesc(h);
- >> outim = imfilter(im, h); % correlation
- >> imshow(outim);

outim

Properties of smoothing filters

- Smoothing
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

Predict the outputs using correlation filtering

Convolution

- · Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

Н

Properties of convolution

- Shift invariant:
 - Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Superposition:

$$- h * (f1 + f2) = (h * f1) + (h * f2)$$

Properties of convolution

Commutative:

$$f * g = g * f$$

Associative

$$(f * g) * h = f * (g * h)$$

· Distributes over addition

$$f * (g + h) = (f * g) + (f * h)$$

Scalars factor out

$$kf * g = f * kg = k(f * g)$$

• Identity:

unit impulse
$$e = [..., 0, 0, 1, 0, 0, ...]$$
. $f * e = f$

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows with a 1D filter
 - Convolve all columns with a 1D filter

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

Effect of smoothing filters

5x5

Additive Gaussian noise

Salt and pepper noise

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Summary

- · Image "noise"
- · Linear filters and convolution useful for
 - Enhancing images (smoothing, removing noise)
 - · Box filter
 - · Gaussian filter
 - · Impact of scale / width of smoothing filter
 - Detecting features (next time)
- Separable filters more efficient
- · Median filter: a non-linear filter, edge-preserving

Coming up

- Tuesday:
 - Filtering part 2: filtering for features (edges, gradients, seam carving application)
 - See reading assignment on webpage
- Next Friday:
 - Assignment 0 is due on Canvas 11:59 PM