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Mining, and
Intro to Categorization

Tues April 11

Kristen Grauman
UT Austin

Recognition and learning

Recognizing categories 
(objects, scenes, 
activities, attributes…), 
learning techniques

Last time

• Instance recognition wrap up:
• Spatial verification
• Sky mapping example
• Query expansion
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Review questions

• Does an inverted file index sacrifice accuracy in 
bag-of-words image retrieval?  Why or why not?

• Name a pro and con of query expansion.
• Why does a single SIFT match cast a 4D vote for the 

Generalized Hough spatial verification model?
• What does a perfect precision recall curve look 

like?

Today

• Discovering visual patterns
• Randomized hashing algorithms
• Mining large-scale image collections

• Introduction to visual categorization

Locality Sensitive Hashing (LSH)
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Guarantees approximate near 
neighbors in sub-linear time, 
given appropriate hash 
functions.Xi

N

[Indyk and Motwani ‘98, Gionis et al.’99, Charikar ‘02, Andoni et al. ‘04]

Kristen Grauman
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The probability that a random hyperplane separates two 
unit vectors depends on the angle between them:

[Goemans and Williamson 1995, Charikar 2004]

High dot product:  
unlikely to split

Lower dot product: 
likely to split

Corresponding hash function:

LSH function example: 
inner product similarity

for

Kristen Grauman

LSH function example: 
Min-hash for set overlap similarity

A1 ∩ A2

A1 U A2

A1 A2

[Broder, 1999]

Kristen Grauman

LSH function example: 
Min-hash for set overlap similarity

145263

0.630.880.550.940.310.19

0.070.750.590.220.900.41

A C D EB F

Vocabulary

A CB C DB A E F

f1: C C F

f2: 453621 A B A

f3: 546123 C C A
f4: 216534 B B E

Set A Set B Set C

Random orderings min-Hash

overlap (A,B) = 3/4 (1/2) overlap (A,C) = 1/4 (1/5) overlap (B,C) = 0 (0)

~ Un (0,1)

~ Un (0,1)

Slide credit: Ondrej Chum [Broder, 1999]
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LSH function example: 
Min-hash for set overlap similarity

A E Q R V

A

J A C Q V ZE

Q VE RJC Z

YA: B:

A U B:

P(h(A) = h(B)) =               
|A ∩ B|

|A U B|
h2(A) h2(B)Q

h1(A) h1(B)A A

C

Ordering by f1Ordering by f2

Y

Slide credit: Ondrej Chum [Broder, 1999]

Multiple hash functions and tables

• Generate k such hash functions, 
concatenate outputs into hash key:

• To increase recall, search multiple 
independently generated hash tables
– Search/rank the union of collisions in 

each table, or

– Require that two examples in at least T
of the tables to consider them similar.

  k
kk yxsimyhxh ),()()(P ,...,1,...,1  111101

110111

110101

111101

110111

110101

111001

111111

110100

TABLE 1

TABLE 2

Kristen Grauman

Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 
collection as a whole.

• What is common?

• What is unusual?

• What co-occurs?

• Which exemplars 
are most 
representative?

Kristen Grauman
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Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 
collection as a whole.

We’ll look at a few examples:
• Connected component clustering via hashing

– [Geometric Min-hash, Chum et al. 2009]

• Visual Rank to choose “image authorities” 
– [Jing and Baluja, 2008]

• Frequent item-set mining with spatial patterns
– [Quack et al., 2007]

Kristen Grauman

Connected component clustering
with hashing

1.Detect seed pairs via hash collisions
2.Hash to related images
3.Compute connected components of the graph

Slide credit: Ondrej Chum

Contrast with frequently used quadratic-time clustering algorithms

Geometric Min-hash

• Main idea: build spatial relationships into the 
hash key construction:
– Select first hash output according to min hash 

(“central word”)

– Then append subsequent hash outputs from 
within its neighborhood 

[Chum, Perdoch, Matas, CVPR 2009]

EBF

Figure from Ondrej Chum
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Results: 
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

Hertford

Keble

Magdalen

Pitt Rivers

Radcliffe 
Camera

All Soul's

Ashmolean

Balliol

Bodleian

Christ Church

Cornmarket

100 000 Images downloaded from FLICKR
Includes 11 Oxford Landmarks with manually labeled ground truth

Slide credit: Ondrej Chum

Results: 
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

Slide credit: Ondrej Chum Discovering small objects

Results: 
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

Slide credit: Ondrej Chum Discovering small objects
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Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 
collection as a whole.

We’ll look briefly at a few recent examples:
• Connected component clustering via hashing 

[Geometric Min-hash, Chum et al. 2009]

• Visual Rank to choose “image authorities” [Jing and 
Baluja, 2008]

• Frequent item-set mining with spatial patterns 
[Quack et al., 2007]

Visual Rank: motivation

• Goal: select 
small set of 
“best” images 
to display 
among millions 
of candidates 

Product search Mixed-type search Kristen Grauman

Visual Rank

• Compute relative “authority” of an image 
based on random walk principle.  
– Application of PageRank to visual data

• Main ideas:
– Graph weights = number of matched local features 

between two images

– Exploit text search to narrow scope of each graph

– Use LSH to make similarity computations efficient

[Jing and Baluja, PAMI 2008]

Kristen Grauman
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Results: Visual Rank
[Jing and Baluja, PAMI 2008]

Original has more matches to rest Similarity graph generated from top 
1,000 text search results of “Mona-Lisa”

Highest visual rank!

Kristen Grauman

Results: Visual Rank
[Jing and Baluja, PAMI 2008]

Similarity graph generated from top 1,000 text search 
results of “Lincoln Memorial”.  
Note the diversity of the high-ranked images.Kristen Grauman

Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 
collection as a whole.

We’ll look briefly at a few recent examples:
• Connected component clustering via hashing 

[Geometric Min-hash, Chum et al. 2009]

• Visual Rank to choose “image authorities” [Jing and 
Baluja, 2008]

• Frequent item-set mining with spatial patterns 
[Quack et al., 2007]
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Frequent item-sets

Kristen Grauman

• What configurations of local 
features frequently occur in 
large collection?

• Main idea: Identify item-sets
(visual word layouts) that 
often occur in transactions
(images)

• Efficient algorithms from 
data mining (e.g., Apriori
algorithm, Agrawal 1993) 

Frequent item-set mining
for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Kristen Grauman

Frequent item-set mining
for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Kristen Grauman
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Two example itemset clusters

Frequent item-set mining
for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Kristen Grauman

Discovering favorite views
Discovering Favorite Views of Popular Places with Iconoid
Shift. T. Weyand and B. Leibe. ICCV 2011.

Kristen Grauman

Today

• Discovering visual patterns
• Randomized hashing algorithms
• Mining large-scale image collections

• Introduction to visual categorization
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What does recognition involve?

Fei-Fei Li

Detection: are there people?

Activity: What are they doing?
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Object categorization

mountain

building

tree

banner

vendor
people

street lamp

Instance recognition

Potala 
Palace

A particular 
sign

Scene and context categorization

• outdoor

• city

• …
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Attribute recognition

flat

gray
made of 

fabric

crowded
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Object Categorization

• Task Description
 “Given a small number of  training images of a category, 

recognize a-priori unknown instances of that category and assign 
the correct category label.”

• Which categories are feasible visually?

German
shepherd

animaldog living
being

“Fido”
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Visual Object Categories

• Basic Level Categories in human categorization 
[Rosch 76, Lakoff 87]
 The highest level at which category members have similar 

perceived shape
 The highest level at which a single mental image reflects the 

entire category
 The level at which human subjects are usually fastest at 

identifying category members
 The first level named and understood by children 

 The highest level at which a person uses similar motor actions 
for interaction with category members
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Visual Object Categories

• Basic-level categories in humans seem to be defined 
predominantly visually.

• There is evidence that humans (usually)
start with basic-level categorization 

before doing identification.
 Basic-level categorization is easier

and faster for humans than object
identification!

 How does this transfer to automatic 
classification algorithms?

Basic level

Individual 
level

Abstract 
levels

“Fido”

dog

animal

quadruped

German
shepherd

Doberman

cat cow

…

…

……

… …

How many object categories are there?

Biederman 1987Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.



4/11/2017

15

Pe
rc

ep
tu

al
 a

n
d
 S

en
so

ry
 A

u
gm

en
te

d
 C

om
p
u
ti

n
g

V
is

u
a

l O
b

je
c

t 
R

e
c

o
g

n
it

io
n

 T
u

to
ri

a
l

K. Grauman, B. LeibeK. Grauman, B. Leibe

Other Types of Categories

• Functional Categories
 e.g. chairs = “something you can sit on”

Why recognition?

– Recognition a fundamental part of perception
• e.g., robots, autonomous agents

– Organize and give access to visual content
• Connect to information 

• Detect trends and themes

http://www.darpa.mil/grandchallenge/gallery.asp

Autonomous agents able to 
detect objects 

Slide credit: Kristen Grauman
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Posing visual queries

Kooaba, Bay & Quack et al.

Yeh et al., MIT

Belhumeur et al.

Slide credit: Kristen Grauman

Finding visually similar objects

Slide credit: Kristen Grauman

Exploring community photo collections

Snavely et al.

Simon & SeitzSlide credit: Kristen Grauman
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Discovering visual patterns

Sivic & Zisserman

Lee & Grauman

Wang et al.

Objects

Actions

Categories

Slide credit: Kristen Grauman

Auto-annotation

Gammeter et al. T. Berg et al.

Slide credit: Kristen Grauman

Challenges: robustness

Illumination Object pose Clutter

ViewpointIntra-class 
appearance

Occlusions

Slide credit: Kristen Grauman
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Challenges: 
context and human experience

Context cues

Slide credit: Kristen Grauman

Challenges:
context and human experience

Context cues Function Dynamics

Video credit: J. DavisSlide credit: Kristen Grauman

Challenges: complexity

• Millions of pixels in an image

• 30,000 human recognizable object categories

• 30+ degrees of freedom in the pose of articulated 
objects (humans)

• Billions of images online

• 82 years to watch all videos uploaded to YouTube 
per day!

…
• About half of the cerebral cortex in primates is 

devoted to processing visual information [Felleman
and van Essen 1991]

Slide credit: Kristen Grauman
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Challenges: learning with 
minimal supervision

MoreLess

Slide credit: Kristen Grauman

Slide from Pietro Perona, 2004 Object Recognition workshop

Slide from Pietro Perona, 2004 Object Recognition workshop
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Recognizing flat, textured 
objects (like books, CD 

covers, posters)

Reading license plates, 
zip codes, checks

Fingerprint recognition

Frontal face detection

What kinds of things work best today?

What kinds of things work best today?

Progress charted by datasets

COIL

Roberts 1963 

19961963 …

Slide credit: Kristen Grauman
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INRIA PedestriansINRIA Pedestrians

UIUC CarsUIUC Cars

MIT-CMU FacesMIT-CMU Faces
INRIA Pedestrians

UIUC Cars

MIT-CMU Faces

2000

Progress charted by datasets

19961963 …

Slide credit: Kristen Grauman

Caltech-256Caltech-256

Caltech-101Caltech-101

MSRC 21 ObjectsMSRC 21 Objects

Caltech-256

Caltech-101

MSRC 21 Objects

2000 2005

Progress charted by datasets

19961963 …

Slide credit: Kristen Grauman

Faces in the WildFaces in the Wild

80M Tiny Images80M Tiny Images

Birds-200Birds-200

PASCAL VOCPASCAL VOC

ImageNetImageNet

Faces in the Wild

80M Tiny Images

Birds-200

PASCAL VOCPASCAL VOCPASCAL VOC

ImageNet

2000 2005 2007 2008 2013

Progress charted by datasets

19961963 …

Slide credit: Kristen Grauman
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Evolution of methods

• Hand-crafted models
• 3D geometry
• Hypothesize and align

• Hand-crafted features
• Learned models
• Data-driven

• “End-to-end” 
learning of 
features and 
models*,**

* Labeled data availability
** Architecture design decisions, parameters.

Next

• Sliding window object detection (Faces!)

Supervised classification
• Given a collection of labeled examples, come up with a 

function that will predict the labels of new examples.

• How good is some function we come up with to do the 
classification?  

• Depends on
– Mistakes made

– Cost associated with the mistakes

“four”

“nine”

?
Training examples Novel input
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Supervised classification
• Given a collection of labeled examples, come up with a 

function that will predict the labels of new examples.

• Consider the two-class (binary) decision problem
– L(4→9): Loss of classifying a 4 as a 9

– L(9→4): Loss of classifying a 9 as a 4

• Risk of a classifier s is expected loss:

• We want to choose a classifier so as to minimize this 
total risk

       49 using|49Pr94 using|94Pr)(  LsLssR

Supervised classification

Feature value x

Optimal classifier will 
minimize total risk. 

At decision boundary, 
either choice of label 
yields same expected 
loss.

If we choose class “four” at boundary, expected loss is:

If we choose class “nine” at boundary, expected loss is:

4)(9 )|9 is class(

4)(4) | 4 is (class4)(9 )|9 is class(




LP

LPLP

x

xx

9)(4 )|4 is class(  LP x

Supervised classification

Feature value x

Optimal classifier will 
minimize total risk. 

At decision boundary, 
either choice of label 
yields same expected 
loss.

So, best decision boundary is at point x where

To classify a new point, choose class with lowest expected 
loss; i.e., choose “four” if

9)(4) |4 is P(class4)(9 )|9 is class(  LLP xx

)49()|9()94()|4(  LPLP xx
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Supervised classification

Feature value x

Optimal classifier will 
minimize total risk. 

At decision boundary, 
either choice of label 
yields same expected 
loss.

So, best decision boundary is at point x where

To classify a new point, choose class with lowest expected 
loss; i.e., choose “four” if

9)(4) |4 is P(class4)(9 )|9 is class(  LLP xx

)49()|9()94()|4(  LPLP xx

P(4 | x) P(9 | x)

Probability
Basic probability

• X is a random variable

• P(X) is the probability that X achieves a certain value

•

• or 

• Conditional probability:   P(X | Y)
– probability of X given that we already know Y

continuous X discrete X

called a PDF
-probability distribution/density function

Source: Steve Seitz

Example: learning skin colors
• We can represent a class-conditional density using a 

histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)

Percentage of skin 
pixels in each bin
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Example: learning skin colors
• We can represent a class-conditional density using a 

histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)
Now we get a new image, 
and want to label each pixel 
as skin or non-skin. 

What’s the probability we 
care about to do skin 
detection?

Bayes rule

)(

)()|(
)|(

xP

skinPskinxP
xskinP 

posterior priorlikelihood

)()|(  )|( skinPskinxPxskinP 

Where does the prior come from?

Why use a prior?

Example: classifying skin pixels
Now for every pixel in a new image, we can 
estimate probability that it is generated by skin.

Classify pixels based on these probabilities

Brighter pixels 
higher probability 
of being skin



4/11/2017

26

Example: classifying skin pixels

Gary Bradski, 1998

Gary Bradski, 1998

Example: classifying skin pixels

Using skin color-based face detection and pose estimation 
as a video-based interface

Supervised classification

• Want to minimize the expected misclassification

• Two general strategies
– Use the training data to build representative 

probability model; separately model class-conditional 
densities and priors (generative)

– Directly construct a good decision boundary, model 
the posterior (discriminative)
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This same procedure applies in more general circumstances
• More than two classes

• More than one dimension

General classification

H. Schneiderman and T.Kanade

Example:  face detection
• Here, X is an image region

– dimension = # pixels 

– each face can be thought
of as a point in a high
dimensional space

H. Schneiderman, T. Kanade. "A Statistical Method for 3D 
Object Detection Applied to Faces and Cars". IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR 2000) 
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf Source: Steve Seitz

Next

• Sliding window object detection (Faces!)


