

Last time

- Discovering visual patterns
 - Randomized hashing algorithms
 - Mining large-scale image collections

Review questions: on your own

- What kind of input data is searchable with minhash hashing?
- What kind of input data is searchable with LSH using random projections?
- For Visual "PageRank" what do weights between nodes (images) signify?

Object Categorization

- Task Description
 - "Given a small number of training images of a category, recognize a-priori unknown instances of that category and assign the correct category label."
- Which categories are feasible visually?

"Fido"

German shepherd

living being animal

K. Grauman, B. Leibe

Visual Object Categories

- Basic Level Categories in human categorization [Rosch 76, Lakoff 87]
 - The highest level at which category members have similar perceived shape
 - > The highest level at which a single mental image reflects the entire category
 - > The level at which human subjects are usually fastest at identifying category members
 - > The first level named and understood by children
 - > The highest level at which a person uses similar motor actions for interaction with category members

K. Grauman, B. Leibe

Visual Object Categories

- Basic-level categories in humans seem to be defined predominantly visually.
- There is evidence that humans (usually) start with basic-level categorization before doing identification.
- before doing identification.

 ⇒ Basic-level categorization is easier and faster for humans than object identification!
- How does this transfer to automatic classification algorithms?

animal

How many object categories are there?

Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.

Biederman 1987

Other Types of Categories • Functional Categories • e.g. chairs = "something you can sit on" **Comman, B. Lebbe** Other Types of Categories • Functional Categories • Categories

Why recognition?

- Recognition a fundamental part of perception
 - e.g., robots, autonomous agents
- Organize and give access to visual content
 - Connect to information
 - Detect trends and themes

Autonomous agents able to detect objects Slide: Kristen Graumen

Challenges: context and human experience Context cues Slide: Kristen Grauman

Challenges: context and human experience					
		Ą			
Context cues	Function	Dynamics			
Slide: Kristen Grauman		Video credit: J. Davis			

Challenges: complexity

- Millions of pixels in an image
- 30,000 human recognizable object categories
- 30+ degrees of freedom in the pose of articulated objects (humans)
- · Billions of images online
- 82 years to watch all videos uploaded to YouTube per day!
- About half of the cerebral cortex in primates is devoted to processing visual information [Felleman and van Essen 1991]

Slide: Kristen Grauma

	1
Evolution of methods	
Hand-crafted models Hand-crafted features "End-to-end"	
• 3D geometry • Learned models learning of features and models*,**	
* Labeled data availability *Idde: Kristen Grauman * Architecture design decisions, parameters.	
	1
Next	
Supervised classification	
Window-based generic object detection	
basic pipelineboosting classifiers	
 face detection as case study 	
L	
	1
Supervised classification	
Given a collection of <i>labeled</i> examples, come up with a function that will predict the labels of new examples.	
"four" 4 4 4 4	
"nine"	
Training examples Novel input	

• How good is some function we come up with to do the classification?

Mistakes madeCost associated with the mistakes

• Depends on

Supervised classification

- Given a collection of labeled examples, come up with a function that will predict the labels of new examples.
- Consider the two-class (binary) decision problem
 - L(4→9): Loss of classifying a 4 as a 9
 - L(9→4): Loss of classifying a 9 as a 4
- Risk of a classifier s is expected loss:

 $R(s) = \Pr(4 \to 9 \mid \text{using } s)L(4 \to 9) + \Pr(9 \to 4 \mid \text{using } s)L(9 \to 4)$

We want to choose a classifier so as to minimize this total risk

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

If we choose class "four" at boundary, expected loss is: = $P(\text{class is } 9 \mid \mathbf{x}) L(9 \rightarrow 4) + P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 4)$

If we choose class "nine" at boundary, expected loss is: $= P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 9)$

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss

So, best decision boundary is at point ${\boldsymbol x}$ where

 $P(\text{class is } 9 \mid \mathbf{x}) L(9 \rightarrow 4) = P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 9)$

To classify a new point, choose class with lowest expected loss; i.e., choose "four" if

 $P(4 | \mathbf{x})L(4 \rightarrow 9) > P(9 | \mathbf{x})L(9 \rightarrow 4)$

Bayes rule

nosterio

likelihood

prior

$$P(skin \mid x) = \frac{P(x \mid skin)P(skin)}{P(x)}$$

 $P(skin \mid x) \alpha P(x \mid skin) P(skin)$

Where does the prior come from?

Why use a prior?

Example: classifying skin pixels

Now for every pixel in a new image, we can estimate probability that it is generated by skin.

Brighter pixels → higher probability of being skin

Classify pixels based on these probabilities

- if $p(\text{skin}|\boldsymbol{x}) > \theta$, classify as skin
- • if $p(\text{skin}|\boldsymbol{x}) < \theta$, classify as not skin

Supervised classification

- Want to minimize the expected misclassification
- Two general strategies
 - Use the training data to build representative probability model; separately model class-conditional densities and priors (generative)
 - Directly construct a good decision boundary, model the posterior (discriminative)

General classification

This same procedure applies in more general circumstances

- · More than two classes
- More than one dimension

Example: face detection

- · Here, X is an image region
 - dimension = # pixels
 - each face can be thought of as a point in a high dimensional space

H. Schneiderman, T. Kanade. "A Statistical Method for 3D Object Detection Applied to Faces and Cars". IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000) http://www.2.cs.mc.adu/afc/sec.mc.adu/asc/sec.www.CVPR00.pdf

H. Schneiderman and T.Kanade

Today

- Supervised classification
- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study

Generic category recognition: basic framework

- · Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- · Generate candidates in new image
- · Score the candidates

Window-based models Building an object model Given the representation, train a binary classifier Car/non-car Classifier NoYengtcancar.

Boosting illustration

Final classifier is a combination of weak classifiers

Boosting: training

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Slide credit: Lana Lazebnik

Viola-Jones face detector

ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola viola@mer1.com Mitsubishi Electric Research Labs 201 Broadway, 8th FL Cambridge, MA 02139 Michael Jones mjones@crl.dec.com Compaq CRL One Cambridge Center Cambridge, MA 02142

Abstract

This paper describes a machine learning approach for vi-

tected at 15 frames per second on a conventional 700 MHz Intel Pentium III. In other face detection systems, auxiliary information, such as image differences in video sequences,

Viola-Jones face detector

Main idea:

- Represent local texture with efficiently computable "rectangular" features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly

Viola-Jones detector: features "Rectangular" filters Feature output is difference between adjacent regions Efficiently computable with integral image: any sum can be computed in constant time.

Computing the integral image ii(x, y-1) s(x-1, y) i(x, y)Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)Integral image: ii(x, y) = ii(x, y-1) + s(x, y)

Computing sum within a rectangle

• Let A,B,C,D be the values of the integral image at the corners of a rectangle

• Then the sum of original image values within the rectangle can be computed as:

sum = A - B - C + D

• Only 3 additions are required for any size of rectangle!

Viola-Jones detector: features "Rectangular" filters Feature output is difference between adjacent regions Efficiently computable with integral image: any sum can be computed in constant time Avoid scaling images scale features directly for same cost

Viola-Jones detector: features Considering all possible filter parameters: position, scale, and type: 180,000+ possible features associated with each 24 x 24 window Which subset of these features should we use to determine if a window has a face? Use AdaBoost both to select the informative features and to form the classifier Viola-Jones detector: AdaBoost • Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error. θ_t Resulting weak classifier: • i • • • • • $\int +1 \quad \text{if } f_t(x) > \theta_t$ $h_t(x)$ 1 otherwise **→ → → → → →** ш. For next round, reweight the $-f_{t}(x) \longrightarrow$ examples according to errors, Outputs of a possible rectangle feature on choose another filter/threshold combo. faces and non-faces. ide: Kristen Grauman Given example images (x₁, y₁),...,(x_n, y_n) where y_i = 0, 1 for negative and positive examples respectively. AdaBoost Algorithm • Initialize weights $w_{1,i}=\frac{1}{2m},\frac{1}{2l}$ for $y_i=0,1$ respectively, where m and l are the number of negatives and positives respectively. • For $t=1,\ldots,T$: Start with uniform weights on training examples 1. Normalize the weights, $\{x_1,...x_n\}$ $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$ For T rounds so that w_t is a probability distribution. _ Evaluate For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t, ε_j = ∑_i w_t |h_j(ε_j - y_t|. Choose the classifier, h_t, with the lowest error ε_t. weighted error for each feature, pick best. 4. Update the weights: Re-weight the examples: Incorrectly classified -> more weight $w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$ Correctly classified -> less weight where $e_i=0$ if example x_i is classified correctly, $e_i=1$ otherwise, and $\beta_t=\frac{\epsilon_t}{1-\epsilon_t}$.

The final strong classifier is:

 $h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$

Final classifier is combination of the

Freund & Schapire 1995

weak ones, weighted according to error they had.

Viola-Jones Face Detector: Results First two features selected

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- How to make the detection more efficient?

Cascading classifiers for detection

- Form a cascade with low false negative rates early on
- Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Slide: Kristen Grauma

Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
 - · Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

Viola-Jones detector: summary

Train with 5K positives, 350M negatives Real-time detector using 38 layer cascade 6061 features in all layers

[Implementation available in OpenCV] ide: Kristen Grauman

Viola-Jones detector: summary

- A seminal approach to real-time object detection
 - 15,000 citations and counting
- Training is slow, but detection is very fast
- Key ideas
 - > Integral images for fast feature evaluation
 - > Boosting for feature selection
 - Attentional cascade of classifiers for fast rejection of nonface windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

Detecting profile faces? Can we use the same detector?

Viola-Jones Face Detector: Results Viola-Jones Face Detector: Results

Example using Viola-Jones detector Buffy Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A.

"Hellol My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006. http://www.robots.ox.ac.uk/-vgg/research/nface/index.html

Consumer application: iPhoto Things iPhoto thinks are faces **Things iPhoto thinks are faces** **Th

Privacy Visor
http://www.3ders.org/articles/20150812-japan-3d-printed-privacy-visors-
will-block-facial-recognition-software.html

Boosting: pros and cons

- · Advantages of boosting
 - · Integrates classification with feature selection
 - Complexity of training is linear in the number of training
 - · Flexibility in the choice of weak learners, boosting scheme
 - Testing is fast
 - Easy to implement
- Disadvantages
 - Needs many training examples
 - Needs thatly until your models may outperform in practice (SVMs, CNNs,...)
 especially for many-class problems

Window-based detection: strengths

- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - > Good feature choices critical
 - > Past successes for certain classes

Slide: Kristen Grauma

Window-based detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

Slide: Kristen Grauman

Limitations (continued)

• Not all objects are "box" shaped

Slide: Kristen Grauman

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

Slide: Kristen Grauman

Limitations (continued)

• If considering windows in isolation, context is lost

Sliding window

Detector's view

Figure credit: Derek Hojem

Slide: Kristen Graumar

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

Slide: Kristen Grauma

Summary

- Basic pipeline for window-based detection
 - Model/representation/classifier choice
 - Sliding window and classifier scoring
- · Boosting classifiers: general idea
- Viola-Jones face detector
 - Exemplar of basic paradigm
 - Plus key ideas: rectangular features, Adaboost for feature selection, cascade
- · Pros and cons of window-based detection