SVM wrap-up and Neural Networks

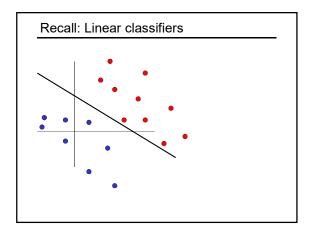
Tues April 25 Kristen Grauman UT Austin

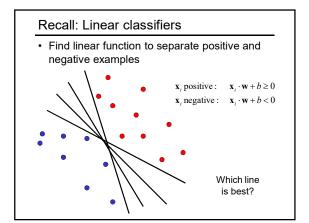
Last time

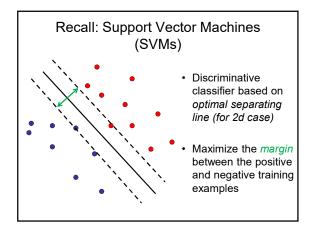
- Supervised classification continued
 - Nearest neighbors (wrap up)
 - Support vector machines • HoG pedestrians example
 - Understanding classifier mistakes with iHoG
 - Kernels
 - Multi-class from binary classifiers

Today

- Support vector machines (wrap-up) • Pyramid match kernels
- Evaluation
 - Scoring an object detector
 - Scoring a multi-class recognition system
- Intro to (deep) neural networks







Recall: Form of SVM solution • Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$ (for any support vector) $\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$ • Classification function: $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + b)$ $= \operatorname{sign}(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b)$ $\lim_{i} f(x) < 0, \ classify$ as negative. $\lim_{i} f(x) > 0, \ classify$ as positive

Nonlinear SVMs

 The kernel trick: instead of explicitly computing the lifting transformation φ(x), define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

SVMs: Pros and cons

Pros

- · Kernel-based framework is very powerful, flexible
- Often a sparse set of support vectors compact at test time
 Work very well in practice, even with small training sample
- sizes

Cons

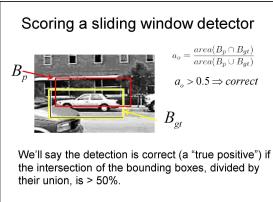
- No "direct" multi-class SVM, must combine two-class SVMs
- · Can be tricky to select best kernel function for a problem
- · Computation, memory
 - During training time, must compute matrix of kernel values for
 - every pair of examples - Learning can take a very long time for large-scale problems

Review questions

- What are tradeoffs between the one vs. one and one vs. all paradigms for multi-class classification?
- What roles do kernels play within support vector machines?
- What can we expect the training images associated with support vectors to look like?
- What is hard negative mining?

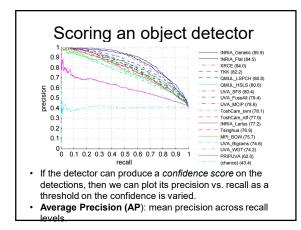
Scoring a sliding window detector

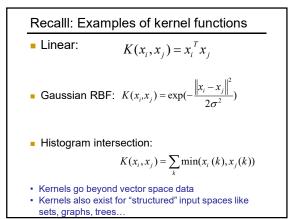
If prediction and ground truth are *bounding boxes*, when do we have a correct detection?

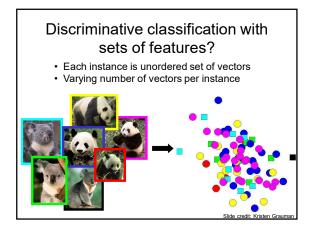


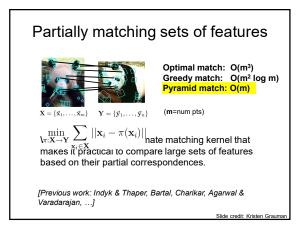
Kristen Grauman

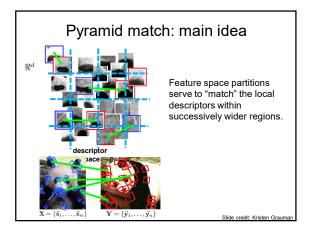
Kristen Grauman

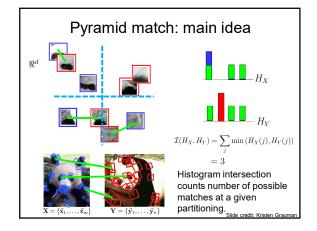


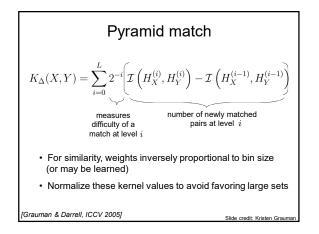


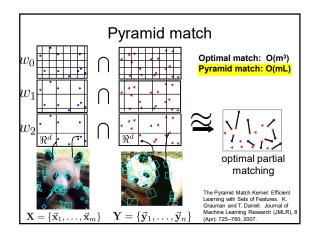


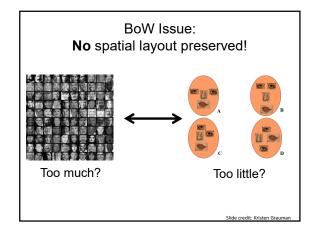




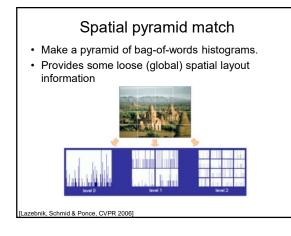


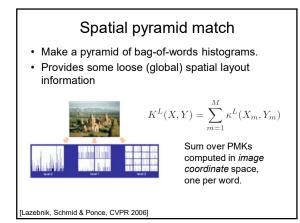


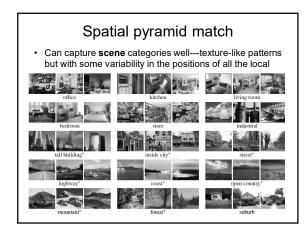


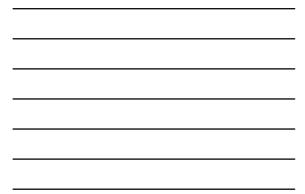


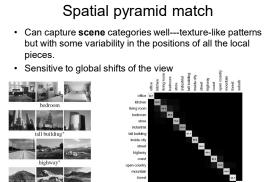


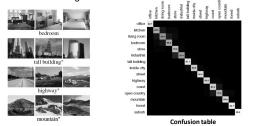












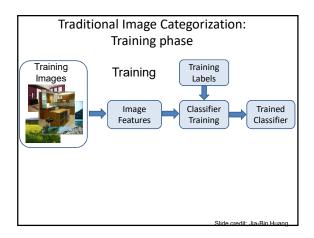
Summary: Past week

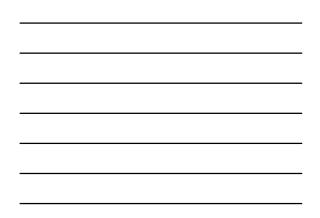
- Object recognition as classification task
 - Boosting (face detection ex)
 - . Support vector machines and HOG (person detection ex)
 - Pyramid match kernels
 - Hoggles visualization for understanding classifier mistakes Nearest neighbors and global descriptors (scene rec ex)

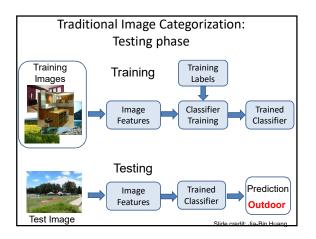
 - Sliding window search paradigm
 - Pros and cons •
 - Speed up with attentional cascade
- Evaluation
 - Detectors: Intersection over union, precision recall • Classifiers: Confusion matrix

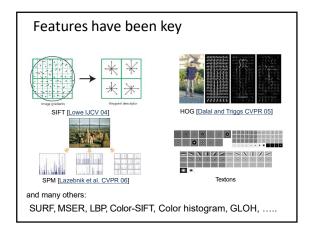
Today

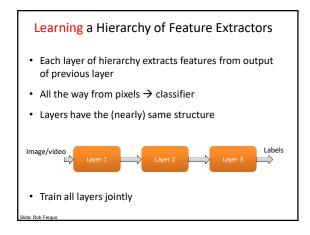
- Support vector machines (wrap-up) Pyramid match kernels
- Evaluation
 - Scoring an object detector
 - Scoring a multi-class recognition system
- Intro to (deep) neural networks

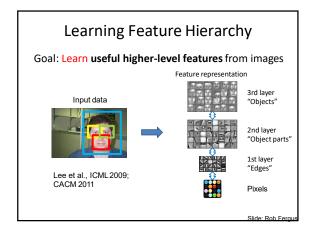


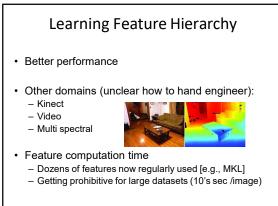




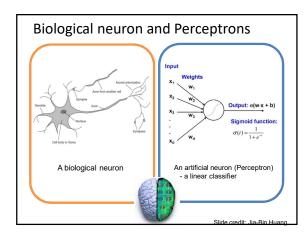


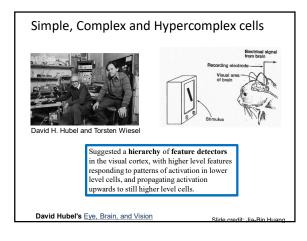


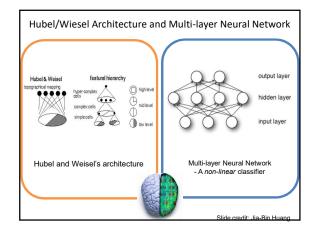


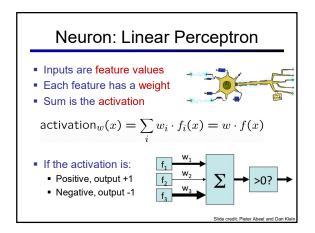


Slide: R. Fergu









Multi-layer Neural Network

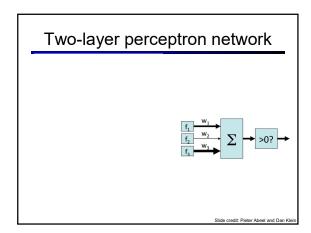
- A non-linear classifier
- **Training:** find network weights **w** to minimize the error between true training labels y_i and estimated labels $f_w(x_i)$

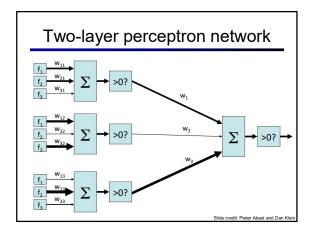
$$E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - f_{\mathbf{w}}(\mathbf{x}_i))^2$$

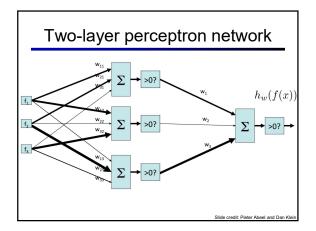
 Minimization can be done by gradient descent provided f is differentiable

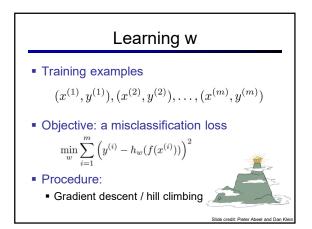
 This training method is called <u>back-propagation</u>

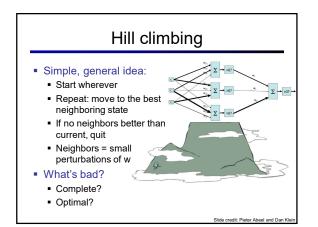
credit: Jia-Bin Huang

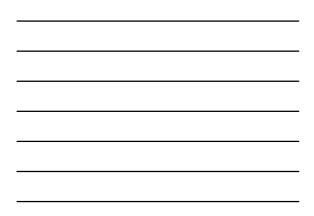


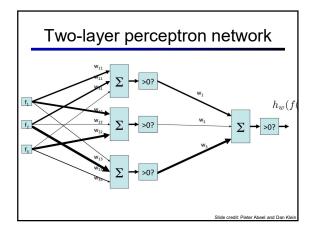


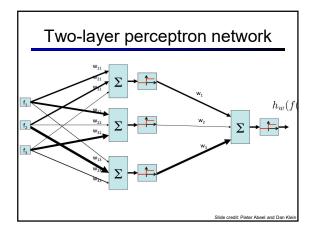


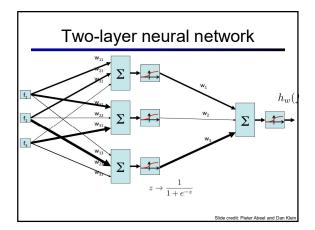












Neural network properties

- Theorem (Universal function approximators): A two-layer network with a sufficient number of neurons can approximate any continuous function to any desired accuracy
- Practical considerations:
 - Can be seen as learning the features
 - Large number of neurons
 Danger for overfitting
 - Hill-climbing procedure can get stuck in bad local optima

eter Abeel and Da

1989

Recap

- Pyramid match kernels:
 - Example of structured input data for kernel-based classifiers (SVM)
- Neural networks / multi-layer perceptrons
- View of neural networks as learning hierarchy of features

Coming up

 Convolutional neural networks for image classification